Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 262: 115163, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37354567

RESUMO

In anuran amphibians (frogs and toads), evidence linking pollution to population declines is limited, in particular through impaired reproduction. Here we review the evidence for pollutant-induced alterations on reproductive endpoints in wild anurans with a particular focus on the application of non-destructive endpoints including on sex ratios, male reproductive phenotypes (data are too scarce for females) and reproductive outputs (reflective of mating success). Data evidencing alterations in sex ratio in wild anurans are scarce, however, both feminisation and masculinisation in response to pollution have been reported (seven studies). Male nuptial pad morphology and calling behaviour display high sensitivity to pollutant-exposure and are important features determining male breeding success, however there is considerable variation in these endpoints and inconsistencies in the responses of them to pollution are reported in wild anurans. Data for clutch size are insufficient to assess sensitivity to pollutants (five studies only). However, hatch success and offspring fitness (tadpole survival/development) are sensitive to pollution, with clear linkages to population stability. In conclusion, there are a wide range of non destructive measures with good potential for application to assess/monitor reproductive health in wild anurans, however, a greater understanding of pollutant effects on these endpoints is needed. There measures deserve wider application as they are relatively simple and inexpensive to implement, and as they can be applied non-destructively are widely applicable to our declining anuran populations.

2.
Environ Sci Pollut Res Int ; 29(26): 40262-40272, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35461421

RESUMO

Amphibians are threatened globally with at least 43% of species declining and the most important stressor being habitat loss or degradation. Amphibians inhabiting highly biodiverse tropical regions are disproportionately threatened; however, the effects of landscape alterations on amphibian health are virtually unknown. In this study, we utilised non-destructive techniques to compare size (weight, snout-vent length [SVL]), body condition, male secondary sexual features (forelimb width, nuptial pad length) and breeding success (egg number, fertility [percentage fertilised eggs], hatching success) in túngara frogs (Engystomops pustulosus) collected from reference (n = 5), suburban (n = 6) and agricultural (n = 4) sites in Trinidad; characterised by presence/absence of crops/houses. All measured endpoints were negatively impacted in frogs collected from agricultural sites. The largest effect was observed for hatching success (2.77-fold lower) and egg number (2.5-fold lower). Less pronounced effects were observed on male frogs (weight: 1.77-fold lower; SVL: 1.18-fold lower; forelimb width: 1.33-fold lower; nuptial pad length: 1.15-fold lower). Our findings demonstrate negative impacts of agricultural sites on túngara frog health, with the number of viable offspring reduced by almost one third. The methods outlined here are technically simple and low-cost and thereby have potential for application to other species in order to investigate the potential impacts of habitat degradation on amphibian health. Furthermore, as these methods are non-destructive, they could be used to investigate the potential contribution of frog size and/or reproductive capability as a causative factor contributing to population declines in threatened species, which is particularly pressing in tropical regions.


Assuntos
Anuros , Melhoramento Vegetal , Animais , Fertilidade , Masculino , Reprodução , Trinidad e Tobago
3.
Environ Sci Technol ; 55(13): 8806-8816, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34167293

RESUMO

Biodiversity is declining at an alarming rate globally, with freshwater ecosystems particularly threatened. Field-based correlational studies have "ranked" stressors according to their relative effects on freshwater biota, however, supporting cause-effect data from laboratory exposures are lacking. Here, we designed exposures to elicit chronic effects over equivalent exposure ranges for three ubiquitous stressors (temperature: 22-28 °C; pollution [14 component mixture]: 0.05-50 µg/L; invasive predator cue [signal crayfish, Pacifasticus leniusculus]: 25-100% cue) and investigated effects on physiological end points in the pond snail (Lymnaeastagnalis). All stressors reduced posthatch survival at their highest exposure levels, however, highly divergent effects were observed at lower test levels. Temperature stimulated hatching, growth, and reproduction, whereas pollution delayed hatching, decreased growth, reduced egg number/embryo viability, and induced avoidance behavior. The invasive predator cue stimulated growth and reduced embryo viability. In agreement with field-based ranking of stressors, pollution was identified as having the most severe effects in our test system. We demonstrate here the utility of laboratory studies to effectively determine hierarchy of stressors according to their likelihood of causing harm in the field, which has importance for conservation. Finally, we report negative impacts on life-history traits central to population stability (survival/reproduction) at the lowest pollution level tested (0.05 µg/L).


Assuntos
Laboratórios , Lymnaea , Animais , Ecossistema , Água Doce , Caramujos
4.
PLoS One ; 15(11): e0241625, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33175903

RESUMO

Amphibian populations are declining globally, however, the contribution of reduced reproduction to declines is unknown. We investigated associations between morphological (weight/snout-vent length, nuptial pad colour/size, forelimb width/size) and physiological (nuptial pad/testis histomorphology, plasma hormones, gene expression) features with reproductive success in males as measured by amplexus success and fertility rate (% eggs fertilised) in laboratory maintained Silurana/Xenopus tropicalis. We explored the robustness of these features to predict amplexus success/fertility rate by investigating these associations within a sub-set of frogs exposed to anti-androgens (flutamide (50 µg/L)/linuron (9 or 45 µg/L)). In unexposed males, nuptial pad features (size/colour/number of hooks/androgen receptor mRNA) were positively associated with amplexus success, but not with fertility rate. In exposed males, many of the associations with amplexus success differed from untreated animals (they were either reversed or absent). In the exposed males forelimb width/nuptial pad morphology were also associated with fertility rate. However, a more darkly coloured nuptial pad was positively associated with amplexus success across all groups and was indicative of androgen status. Our findings demonstrate the central role for nuptial pad morphology in reproductive success in S. tropicalis, however, the lack of concordance between unexposed/exposed frogs complicates understanding of the utility of features of nuptial pad morphology as biomarkers in wild populations. In conclusion, our work has indicated that nuptial pad and forelimb morphology have potential for development as biomarkers of reproductive health in wild anurans, however, further research is needed to establish this.


Assuntos
Reprodução , Xenopus/fisiologia , Animais , Feminino , Fertilidade , Membro Anterior/anatomia & histologia , Masculino , Xenopus/anatomia & histologia
5.
Environ Health Perspect ; 124(4): 452-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26359731

RESUMO

BACKGROUND: There are concerns that diminished prostaglandin action in fetal life could increase the risk of congenital malformations. Many endocrine-disrupting chemicals have been found to suppress prostaglandin synthesis, but to our knowledge, pesticides have never been tested for these effects. OBJECTIVES: We assessed the ability of pesticides that are commonly used in the European Union to suppress prostaglandin D2 (PGD2) synthesis. METHODS: Changes in PGD2 secretion in juvenile mouse Sertoli cells (SC5 cells) were measured using an ELISA. Coincubation with arachidonic acid (AA) was conducted to determine the site of action in the PGD2 synthetic pathway. Molecular modeling studies were performed to assess whether pesticides identified as PGD2-active could serve as ligands of the cyclooxygenase-2 (COX-2) binding pocket. RESULTS: The pesticides boscalid, chlorpropham, cypermethrin, cyprodinil, fenhexamid, fludioxonil, imazalil (enilconazole), imidacloprid, iprodione, linuron, methiocarb, o-phenylphenol, pirimiphos-methyl, pyrimethanil, and tebuconazole suppressed PGD2 production. Strikingly, some of these substances-o-phenylphenol, cypermethrin, cyprodinil, linuron, and imazalil (enilconazole)-showed potencies (IC50) in the range between 175 and 1,500 nM, similar to those of analgesics intended to block COX enzymes. Supplementation with AA failed to reverse this effect, suggesting that the sites of action of these pesticides are COX enzymes. The molecular modeling studies revealed that the COX-2 binding pocket can accommodate most of the pesticides shown to suppress PGD2 synthesis. Some of these pesticides are also capable of antagonizing the androgen receptor. CONCLUSIONS: Chemicals with structural features more varied than previously thought can suppress PGD2 synthesis. Our findings signal a need for in vivo studies to establish the extent of endocrine-disrupting effects that might arise from simultaneous interference with PGD2 signaling and androgen action. CITATION: Kugathas S, Audouze K, Ermler S, Orton F, Rosivatz E, Scholze M, Kortenkamp A. 2016. Effects of common pesticides on prostaglandin D2 (PGD2) inhibition in SC5 mouse Sertoli cells, evidence of binding at the COX-2 active site, and implications for endocrine disruption. Environ Health Perspect 124:452-459; http://dx.doi.org/10.1289/ehp.1409544.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Disruptores Endócrinos/toxicidade , Praguicidas/toxicidade , Prostaglandina D2/antagonistas & inibidores , Células de Sertoli/efeitos dos fármacos , Antagonistas de Receptores de Andrógenos , Animais , Ácido Araquidônico/metabolismo , Domínio Catalítico , Masculino , Camundongos , Modelos Moleculares , Prostaglandina D2/metabolismo , Ligação Proteica , Células de Sertoli/metabolismo
6.
Ecotoxicol Environ Saf ; 117: 7-19, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25817886

RESUMO

Anuran amphibians are often present in agricultural landscapes and may therefore be exposed to chemicals in surface waters used for breeding. We used passive accumulation devices (SPMD and POCIS) to sample contaminants from nine breeding sites of the Common toad (Bufo bufo) across England and Wales, measuring endocrine activity of the extracts in a recombinant yeast androgen screen (YAS) and yeast estrogen screen (YES) and an in vitro vitellogenin induction screen in primary culture of Xenopus laevis hepatocytes. We also assessed hatching, growth, survival, and development in caged larvae in situ, and sampled metamorphs for gonadal histopathology. None of the SPMD extracts exhibited estrogen receptor or androgen receptor agonist activity, while POCIS extracts from two sites in west-central England exhibited concentration-dependent androgenic activity in the YAS. Three sites exhibited significant estrogenic activity in both the YES and the Xenopus hepatocyte. Hatching rates varied widely among sites, but there was no consistent correlation between hatching rate and intensity of agricultural activity, predicted concentrations of agrochemicals, or endocrine activity measured in YES/YAS assays. While a small number of intersex individuals were observed, their incidence could not be associated with predicted pesticide exposure or endocrine activitity measured in the in vitro screens. There were no significant differences in sex ratio, as determined by gonadal histomorphology among the study sites, and no significant correlation was observed between proportion of males and predicted exposure to agrochemicals. However, a negative correlation did become apparent in later sampling periods between proportion of males and estrogenic activity of the POCIS sample, as measured in the YES. Our results suggest that larval and adult amphibians may be exposed to endocrine disrupting chemicals in breeding ponds, albeit at low concentrations, and that chemical contaminants other than plant protection products may contribute to endocrine activity of surface waters in the agricultural landscape.


Assuntos
Bufo bufo/crescimento & desenvolvimento , Disruptores Endócrinos/análise , Estrogênios/análise , Lagoas/química , Poluentes Químicos da Água/análise , Agricultura , Androgênios/análise , Animais , Bioensaio , Cruzamento , Ecossistema , Inglaterra , Feminino , Gônadas/anatomia & histologia , Hepatócitos , Humanos , Larva/crescimento & desenvolvimento , Masculino , Praguicidas , Receptores de Estrogênio , Razão de Masculinidade , Vitelogeninas , País de Gales , Xenopus , Leveduras
7.
Reproduction ; 149(6): 605-13, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25784770

RESUMO

It has been hypothesized that the rise in male reproductive disorders over recent decades may at least be partially attributable to environmental factors, including chemical exposures, but observed associations with single chemicals were rather weak. The aim of this case-control study was to explore the relationship between exposure to mixtures of (anti-)androgenic chemicals during pregnancy and the risk of cryptorchidism and/or hypospadias in offspring, using the total effective xenobiotic burden of anti-androgens (TEXB-AA) as a biomarker. A subsample of 29 cases (16 of cryptorchidism, 12 of hypospadias, and one of both disorders) and 60 healthy controls was nested in a cohort of male newborns recruited between October 2000 and July 2002. The (anti-)androgenic activity of placenta samples collected at delivery was assessed using TEXB-AA biomarker, combined with a bioassay-directed fractionation protocol that separated endogenous hormones from most (anti-)androgenic chemicals by normal-phase HPLC. The bioassay measures the androgen-induced luciferase activity and the inhibition of this pathway by (anti-)androgens. First, we collected 27 HPLC fractions in each placenta extract, which were all tested in the bioassay. The multivariable statistical analyses indicated a statistically significant positive dose-response association between the potent anti-androgenic activity of the HPLC fraction collected during minutes 1-2 (F2) and the risk of malformations (odds ratio: 2.33, 95% CI: 1.04-5.23). This study represents a novel approach for the estimation of combined effects of the total anti-androgenic load and the associations suggest an effect of environmental pollutants on the development of fetal reproductive tract.Free Spanish abstract: A Spanish translation of this abstract is freely available at http://www.reproduction-online.org/content/149/6/605/suppl/DC1.


Assuntos
Antagonistas de Androgênios/toxicidade , Criptorquidismo/induzido quimicamente , Disruptores Endócrinos/toxicidade , Hipospadia/induzido quimicamente , Exposição Materna , Placenta/efeitos dos fármacos , Adulto , Biomarcadores/metabolismo , Estudos de Casos e Controles , Feminino , Humanos , Recém-Nascido , Masculino , Placenta/metabolismo , Gravidez
8.
Biol Rev Camb Philos Soc ; 90(4): 1100-17, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25335651

RESUMO

Globally, amphibians are undergoing a precipitous decline. At the last estimate in 2004, 32% of the approximately 6000 species were threatened with extinction and 43% were experiencing significant declines. These declines have been linked with a wide range of environmental pressures from habitat loss to climate change, disease and pollution. This review evaluates the evidence that endocrine-disrupting contaminants (EDCs) - pollutants that affect hormone systems - are impacting on wild amphibians and contributing to population declines. The review is limited to anurans (frogs and toads) as data for effects of EDCs on wild urodeles (salamanders, newts) or caecilians (limbless amphibians) are extremely limited. Evidence from laboratory studies has shown that a wide range of chemicals have the ability to alter hormone systems and affect reproductive development and function in anurans, but for the most part only at concentrations exceeding those normally found in natural environments. Exceptions can be found for exposures to the herbicide atrazine and polychlorinated biphenyls in leopard frogs (Rana pipiens) and perchlorate in African clawed frogs (Xenopus laevis). These contaminants induce feminising effects on the male gonads (including 'intersex' - oocytes within testes) at concentrations measured in some aquatic environments. The most extensive data for effects of an EDC in wild amphibian populations are for feminising effects of atrazine on male gonad development in regions across the USA. Even where strong evidence has been provided for feminising effects of EDCs, however, the possible impact of these effects on fertility and breeding outcome has not been established, making inference for effects on populations difficult. Laboratory studies have shown that various chemicals, including perchlorate, polychlorinated biphenyls and bromodiphenylethers, also act as endocrine disrupters through interfering with thyroid-dependent processes that are fundamental for amphibian metamorphosis. Perchlorate has also been shown to induce these effects in wild anuran populations from perchlorate-contaminated environments. Overall, the published data available suggest that some health effects observed in wild anuran populations, most notably intersex, likely have a chemical aetiology; however they derive only from very few anuran species and for a few pesticides at field sites in the USA. To understand better the impacts of EDCs on wild anuran populations, as well as other amphibian groups, assessment of fertility in exposed animals are required. Development of non-destructive biomarkers that are indicative of specific EDC-effect mechanisms are also needed to allow the study of vulnerable populations. This will help to distinguish the effects of EDCs from other environmental and/or genetic influences on development and reproduction.


Assuntos
Anfíbios/metabolismo , Disruptores Endócrinos/toxicidade , Reprodução/fisiologia , Poluentes Químicos da Água/toxicidade , Animais , Feminino , Masculino
9.
Ecotoxicology ; 23(7): 1359-65, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24935780

RESUMO

Amphibians are declining and fertility/fecundity are major drivers of population stability. The development of non-destructive methods to assess reproductive health are needed as destructive measures are fundamentally at odds with conservation goals for declining species. We investigated the utility of body size, nuptial pad size and forelimb width as non-destructive biomarkers of internal reproductive physiology, by analysing correlations with commonly used destructive methods in adult male toads (Bufo bufo) from a low human impact and a high human impact site. Principal component analyses revealed that size was the most important variable for explaining inter-individual differences in other measured endpoints, both non-destructive and destructive, except for hormone levels and nuptial pad, which were independent of size. Toads from the LI and the HI site differed in almost all of the measured endpoints; this was largely driven by the significantly smaller size of toads from the HI site. Correlational analyses within sites revealed that size was correlated with several reproductive endpoints in toads from the HI site but not the LI site, indicating a possible limiting effect of size on reproductive physiology. Intersex was observed in 33% of toads from the HI site and incidence was not related to any other measured endpoint. In conclusion, we provide evidence that size is associated with reproductive physiology and that nuptial pad/hormone levels have potential as additional markers due to their independence from size. We also show that human activities can have a negative effect on reproductive physiology of the common toad.


Assuntos
Biomarcadores/análise , Tamanho Corporal , Bufo bufo/fisiologia , Reprodução , Animais , Conservação dos Recursos Naturais , Corticosterona/sangue , Inglaterra , Monitoramento Ambiental , Fertilidade , Masculino , Testículo/patologia , Testosterona/sangue
10.
Toxicol Appl Pharmacol ; 278(3): 201-8, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24055644

RESUMO

Many xenobiotics have been identified as in vitro androgen receptor (AR) antagonists, but information about their ability to produce combined effects at low concentrations is missing. Such data can reveal whether joint effects at the receptor are induced at low levels and may support the prioritisation of in vivo evaluations and provide orientations for the grouping of anti-androgens in cumulative risk assessment. Combinations of 30 AR antagonists from a wide range of sources and exposure routes (pesticides, antioxidants, parabens, UV-filters, synthetic musks, bisphenol-A, benzo(a)pyrene, perfluorooctane sulfonate and pentabromodiphenyl ether) were tested using a reporter gene assay (MDA-kb2). Chemicals were combined at three mixture ratios, equivalent to single components' effect concentrations that inhibit the action of dihydrotesterone by 1%, 10% or 20%. Concentration addition (CA) and independent action were used to calculate additivity expectations. We observed complete suppression of dihydrotestosterone effects when chemicals were combined at individual concentrations eliciting 1%, 10% or 20% AR antagonistic effect. Due to the large number of mixture components, the combined AR antagonistic effects occurred at very low concentrations of individual mixture components. CA slightly underestimated the combined effects at all mixture ratios. In conclusion, large numbers of AR antagonists from a wide variety of sources and exposure routes have the ability of acting together at the receptor to produce joint effects at very low concentrations. Significant mixture effects are observed when chemicals are combined at concentrations that individually do not induce observable AR antagonistic effects. Cumulative risk assessment for AR antagonists should apply grouping criteria based on effects where data are available, rather than on criteria of chemical similarity.


Assuntos
Antioxidantes/toxicidade , Interações Medicamentosas , Disruptores Endócrinos/toxicidade , Poluentes Ambientais/toxicidade , Modelos Biológicos , Drogas Antiandrogênicas não Esteroides/toxicidade , Praguicidas/toxicidade , Androgênios/química , Androgênios/farmacologia , Linhagem Celular Tumoral , Qualidade de Produtos para o Consumidor , Di-Hidrotestosterona/antagonistas & inibidores , Di-Hidrotestosterona/farmacologia , Genes Reporter/efeitos dos fármacos , Humanos , Resíduos Industriais/efeitos adversos , Concentração Osmolar , Regiões Promotoras Genéticas/efeitos dos fármacos , Receptores Androgênicos/química , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Elementos de Resposta/efeitos dos fármacos , Medição de Risco/métodos
11.
Ecohealth ; 10(2): 173-83, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23677560

RESUMO

Batrachochytrium dendrobatidis (Bd) is commonly termed the 'amphibian chytrid fungus' but thus far has been documented to be a pathogen of only batrachian amphibians (anurans and caudatans). It is not proven to infect the limbless, generally poorly known, and mostly soil-dwelling caecilians (Gymnophiona). We conducted the largest qPCR survey of Bd in caecilians to date, for more than 200 field-swabbed specimens from five countries in Africa and South America, representing nearly 20 species, 12 genera, and 8 families. Positive results were recovered for 58 specimens from Tanzania and Cameroon (4 families, 6 genera, 6+ species). Quantities of Bd were not exceptionally high, with genomic equivalent (GE) values of 0.052-17.339. In addition, we report the first evidence of lethal chytridiomycosis in caecilians. Mortality in captive (wild-caught, commercial pet trade) Geotrypetes seraphini was associated with GE scores similar to those we detected for field-swabbed, wild animals.


Assuntos
Anuros/microbiologia , Quitridiomicetos/isolamento & purificação , Micoses/veterinária , África/epidemiologia , Animais , Animais Selvagens/microbiologia , Quitridiomicetos/patogenicidade , Micoses/microbiologia , Micoses/mortalidade , Reação em Cadeia da Polimerase/métodos , América do Sul/epidemiologia
12.
Environ Health Perspect ; 120(11): 1578-84, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23008280

RESUMO

BACKGROUND: Many pesticides in current use have recently been revealed as in vitro androgen receptor (AR) antagonists, but information about their combined effects is lacking. OBJECTIVE: We investigated the combined effects and the competitive AR antagonism of pesticide mixtures. METHODS: We used the MDA-kb2 assay to test a combination of eight AR antagonists that did not also possess AR agonist properties ("pure" antagonists; 8 mix: fludioxonil, fenhexamid, ortho-phenylphenol, imazalil, tebuconazole, dimethomorph, methiocarb, pirimiphos-methyl), a combination of five AR antagonists that also showed agonist activity (5 mix: cyprodinil, pyrimethanil, vinclozolin, chlorpropham, linuron), and all pesticides combined (13 mix). We used concentration addition (CA) and independent action (IA) to formulate additivity expectations, and Schild plot analyses to investigate competitive AR antagonism. RESULTS: A good agreement between the effects of the mixture of eight "pure" AR antagonists and the responses predicted by CA was observed. Schild plot analysis revealed that the 8 mix acted by competitive AR antagonism. However, the observed responses of the 5 mix and the 13 mix fell within the "prediction window" boundaries defined by the predicted regression curves of CA and IA. Schild plot analysis with these mixtures yielded anomalous responses incompatible with competitive receptor antagonism. CONCLUSIONS: A mixture of widely used pesticides can, in a predictable manner, produce combined AR antagonist effects that exceed the responses elicited by the most potent component alone. Inasmuch as large populations are regularly exposed to mixtures of antiandrogenic pesticides, our results underline the need for considering combination effects for these substances in regulatory practice.


Assuntos
Antagonistas de Receptores de Andrógenos/farmacologia , Di-Hidrotestosterona/antagonistas & inibidores , Praguicidas/farmacologia , Receptores Androgênicos/metabolismo , Medição de Risco/métodos , Antagonistas de Receptores de Andrógenos/química , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Feminino , Humanos , Praguicidas/química
14.
J Steroid Biochem Mol Biol ; 127(1-2): 64-73, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21419222

RESUMO

Atrazine is the most commonly detected pesticide contaminant of ground water, surface water, and precipitation. Atrazine is also an endocrine disruptor that, among other effects, alters male reproductive tissues when animals are exposed during development. Here, we apply the nine so-called "Hill criteria" (Strength, Consistency, Specificity, Temporality, Biological Gradient, Plausibility, Coherence, Experiment, and Analogy) for establishing cause-effect relationships to examine the evidence for atrazine as an endocrine disruptor that demasculinizes and feminizes the gonads of male vertebrates. We present experimental evidence that the effects of atrazine on male development are consistent across all vertebrate classes examined and we present a state of the art summary of the mechanisms by which atrazine acts as an endocrine disruptor to produce these effects. Atrazine demasculinizes male gonads producing testicular lesions associated with reduced germ cell numbers in teleost fish, amphibians, reptiles, and mammals, and induces partial and/or complete feminization in fish, amphibians, and reptiles. These effects are strong (statistically significant), consistent across vertebrate classes, and specific. Reductions in androgen levels and the induction of estrogen synthesis - demonstrated in fish, amphibians, reptiles, and mammals - represent plausible and coherent mechanisms that explain these effects. Biological gradients are observed in several of the cited studies, although threshold doses and patterns vary among species. Given that the effects on the male gonads described in all of these experimental studies occurred only after atrazine exposure, temporality is also met here. Thus the case for atrazine as an endocrine disruptor that demasculinizes and feminizes male vertebrates meets all nine of the "Hill criteria".


Assuntos
Atrazina/toxicidade , Feminização/induzido quimicamente , Praguicidas/toxicidade , Testículo/efeitos dos fármacos , Animais , Disruptores Endócrinos/toxicidade , Estrogênios/biossíntese , Estrogênios/sangue , Herbicidas/toxicidade , Humanos , Masculino , Camundongos , Ratos , Testículo/crescimento & desenvolvimento , Testículo/patologia , Testosterona/biossíntese , Testosterona/sangue , Poluentes Químicos da Água/toxicidade
15.
Ecotoxicology ; 20(4): 901-11, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21448622

RESUMO

Pollution was cited by the Global Amphibian Assessment to be the second most important cause of amphibian decline worldwide, however, the effects of the agricultural environment on amphibians are not well understood. In this study, spawn from Bufo bufo was taken from four sites in England and Wales with varying intensities of arable agriculture. Spawn was either placed in tanks containing aged tap water (ex-situ, five replicates) or in cages at the native site (caged, five replicates). Hatching success, abnormal tadpoles, and forelimb emergence were recorded during the larval stage. Individuals were also sampled at five time points (TP) during development (5-, 7-, 9-, 12-, 15-weeks post-hatch) and analysed for morphological parameters. The thyroids (TP2) and the gonads (TP3,4,5) were also analysed histologically. With the exception of the thyroid histopathology, all analysed endpoints were significantly different between ex-situ individuals reared under identical conditions from the different sites. In addition, intensity of arable agriculture had a negative effect on growth and development. At one site, despite distinct rearing conditions, a high level of intersex (up to 42%) and similar sex ratios were observed in both ex-situ and caged individuals. Taken together, these data suggest that maternal exposure and/or events in ovo had a much larger effect on growth, metamorphic development, and sexual differentiation in B. bufo than the ambient environment. This could have important implications for traditional exposure scenarios that typically begin at the larval stage. Intersex is reported for the first time in European amphibians in situ, highlighting the potential use of distinct populations of amphibians in fundamental research into the aetiology of specific developmental effects in wild amphibians.


Assuntos
Agricultura/estatística & dados numéricos , Bufonidae/fisiologia , Poluentes Ambientais/toxicidade , Óvulo/efeitos dos fármacos , Praguicidas/toxicidade , Animais , Bufonidae/crescimento & desenvolvimento , Bufonidae/metabolismo , Disruptores Endócrinos/análise , Disruptores Endócrinos/toxicidade , Monitoramento Ambiental , Poluentes Ambientais/análise , Poluição Ambiental/estatística & dados numéricos , Água Doce/química , Metamorfose Biológica/efeitos dos fármacos , Praguicidas/análise , Diferenciação Sexual/efeitos dos fármacos
16.
Environ Health Perspect ; 119(6): 794-800, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21310686

RESUMO

BACKGROUND: Evidence suggests that there is widespread decline in male reproductive health and that antiandrogenic pollutants may play a significant role. There is also a clear disparity between pesticide exposure and data on endocrine disruption, with most of the published literature focused on pesticides that are no longer registered for use in developed countries. OBJECTIVE: We used estimated human exposure data to select pesticides to test for antiandrogenic activity, focusing on highest use pesticides. METHODS: We used European databases to select 134 candidate pesticides based on highest exposure, followed by a filtering step according to known or predicted receptor-mediated antiandrogenic potency, based on a previously published quantitative structure-activity relationship (QSAR) model. In total, 37 pesticides were tested for in vitro androgen receptor (AR) antagonism. Of these, 14 were previously reported to be AR antagonists ("active"), 4 were predicted AR antagonists using the QSAR, 6 were predicted to not be AR antagonists ("inactive"), and 13 had unknown activity, which were "out of domain" and therefore could not be classified with the QSAR ("unknown"). RESULTS: All 14 pesticides with previous evidence of AR antagonism were confirmed as antiandrogenic in our assay, and 9 previously untested pesticides were identified as antiandrogenic (dimethomorph, fenhexamid, quinoxyfen, cyprodinil, λ-cyhalothrin, pyrimethanil, fludioxonil, azinphos-methyl, pirimiphos-methyl). In addition, we classified 7 compounds as androgenic. CONCLUSIONS: Due to estimated antiandrogenic potency, current use, estimated exposure, and lack of previous data, we strongly recommend that dimethomorph, fludioxonil, fenhexamid, imazalil, ortho-phenylphenol, and pirimiphos-methyl be tested for antiandrogenic effects in vivo. The lack of human biomonitoring data for environmentally relevant pesticides presents a barrier to current risk assessment of pesticides on humans.


Assuntos
Antagonistas de Androgênios/farmacologia , Praguicidas/farmacologia , Antagonistas de Androgênios/classificação , Androgênios/classificação , Androgênios/farmacologia , Linhagem Celular Tumoral , Monitoramento Ambiental , Europa (Continente) , Humanos , Masculino , Praguicidas/classificação , Relação Quantitativa Estrutura-Atividade , Ensaio Tumoral de Célula-Tronco , Leveduras
17.
Environ Sci Technol ; 43(6): 2144-50, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19368227

RESUMO

The potential for agricultural chemicals to cause endocrine disruption (ED) in humans and wildlife is an increasing concern; however, the effects of commonly used pesticides at environmentally relevant concentrations are largely unknown. Therefore, 12 environmentally relevant pesticides (11 herbicides and pentachlorophenol (PCP)) were tested for their endocrine disrupting potential in two in vitro assays. A recombinant yeast screen was used to detect receptor mediated (anti-) estrogenic and (anti-) androgenic activity (concentration range: 0.01-1000 microM), and cultured Xenopus oocytes were used to measure effects on the ovulatory response and ovarian steroidogenesis (concentration range: 0.00625-62.5 microM). Eleven pesticides were active in at least one assay (isoproturon, diuron, linuron, 4-chloro-2-methylphenoxy acetic acid (MCPA), mecoprop, atrazine, simazine, PCP, trifluralin, chlorpropham, bentazone), and one had no effect (2,4-dichlorophenoxy acetic acid (2,4,-D)). The most common effects were antiestrogenic/ antiandrogenic activity in the yeast screen, and inhibition of ovulation in vitro, accompanied by decreased testosterone production. Estrogenic activity was never observed. In addition, the most potent compound identified in vitro (PCP) was tested for ED activity in vivo. A short-term exposure (6 days) of adult female Xenopus to low concentrations (0.1 or 1 microg/L; 0.375 or 3.75 nM) resulted in minor alterations in plasma hormone levels and toxic effects on the ovary. Changes in in vitro human chorionic gonadotropin (hCG) stimulated hormone production in ovarian follicles from exposed individuals was also observed. In conclusion, novel effects of herbicides and PCP at environmentally relevant concentrations were found, and the effects of these compounds on humans and/or wildlife warrant further investigation.


Assuntos
Disruptores Endócrinos/toxicidade , Herbicidas/toxicidade , Pentaclorofenol/toxicidade , Saccharomyces cerevisiae/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Feminino , Oócitos/efeitos dos fármacos , Ovulação/efeitos dos fármacos , Xenopus laevis
18.
Environ Toxicol Chem ; 25(1): 65-71, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16494226

RESUMO

Pollution from agrochemicals may be contributing to the global decline in amphibian populations. Environmentally relevant concentrations of nitrate and/or atrazine on anuran development and gonadal differentiation were tested. Four replicates of 20 tadpoles per tank (80/treatment) were exposed from Taylor-Kollros stage 2 to 3 to stage 23 to 34 to either 10 mg/L nitrate, 10 microg/L atrazine, a combined exposure of 10 mg/L nitrate plus 10 microg/L atrazine, or untreated controls. No treatment-dependent effects on weight, snout-vent or hind limb length, or time to forelimb emergence were observed. The proportions of females increased in all treatments compared to the controls, especially in the combined treatment (chi2 = 17.90, df = 6, p = 0.0065, combined = 66.4% female, control = 41% female). The frequency of intersex was low in all treatments. No treatment-related effects on the total number of spermatogenic cells were observed, but the ratio of cell types differed in that testes from animals in the treated groups exhibited more spermatogonia, fewer spermatocytes, and more spermatids than the control (significantly different, Kruskal-Wallis, p < 0.05). Ovaries from animals treated with nitrate or atrazine exhibited larger immature (previtellogenic) and mature (vitellogenic) follicles, but ovaries from the combined treatment had larger immature follicles only. Testicular oocytes were observed in the nitrate-only and atrazine-only treatments, and the control treatment, but not the combined treatment. Overall, this study has demonstrated changes in sex ratios that are more marked in response to combined nitrate/atrazine exposure than with these chemicals alone. Histological evidence suggests that premature maturation of gonad may occur as a result of nitrate and/or atrazine exposure during larval development.


Assuntos
Atrazina/toxicidade , Herbicidas/toxicidade , Nitratos/toxicidade , Rana pipiens/embriologia , Poluentes Químicos da Água/toxicidade , Animais , Feminino , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Masculino , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/crescimento & desenvolvimento , Rana pipiens/crescimento & desenvolvimento , Diferenciação Sexual/efeitos dos fármacos , Razão de Masculinidade , Espermátides/efeitos dos fármacos , Espermatócitos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...