Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(14): 3962-3967, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38569092

RESUMO

Copper single-site catalysts supported on Zr-based metal-organic frameworks (MOFs) are well-known systems in which the nature of the active sites has been deeply investigated. Conversely, the redox chemistry of the Ce-counterparts is more limited, because of the often-unclear Cu2+/Cu+ and Ce4+/Ce3+ pairs behavior. Herein, we studied a novel Cu2+ single-site catalyst supported on a defective Ce-MOF, Cu/UiO-67(Ce), as a catalyst for the CO oxidation reaction. Based on a combination of in situ DRIFT and operando XAS spectroscopies, we established that Cu+ sites generated during catalysis play a pivotal role. Moreover, the oxygen vacancies associated with Ce3+ sites and presented in the defective Cu/UiO-67(Ce) material are able to activate the O2 molecules, closing the catalytic cycle. The results presented in this work open a new route for the design of active and stable single-site catalysts supported on defective Ce-MOFs.

2.
J Phys Chem C Nanomater Interfaces ; 128(3): 1049-1057, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38293690

RESUMO

Zr-based metal-organic frameworks (MOFs) are excellent heterogeneous porous catalysts due to their thermal stability. Their tunability via node and linker modifications makes them amenable for theoretical studies on catalyst design. However, detailed benchmarks on MOF-based reaction mechanisms combined with kinetics analysis are still scarce. Thus, we here evaluate different computational models and density functional theory (DFT) methods followed by kinetic Monte Carlo studies for a case reaction relevant in biomass upgrading, i.e., the conversion of methyl levulinate to γ-valerolactone catalyzed by UiO-66. We show the impact of cluster versus periodic models, the importance of the DF of choice, and the direct comparison to experimental data via simulated kinetics data. Overall, we found that Perdew-Burke-Ernzerhof (PBE), a widely employed method in plane-wave periodic calculations, greatly overestimates reaction rates, while M06 with cluster models better fits the available experimental data and is recommended whenever possible.

3.
ACS Sustain Chem Eng ; 10(11): 3567-3573, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35360051

RESUMO

Metal-organic frameworks (MOFs) are gaining importance in the field of biomass conversion and valorization due to their porosity, well-defined active sites, and broad tunability. But for a proper catalyst design, we first need detailed insight of the system at the atomic level. Herein, we present the reaction mechanism of methyl levulinate to γ-valerolactone on Zr-based UiO-66 by means of periodic density functional theory (DFT). We demonstrate the role of Zr-based nodes in the catalytic transfer hydrogenation (CTH) and cyclization steps. From there, we perform a computational screening to reveal key catalyst modifications to improve the process, such as node doping and linker exchange.

4.
ACS Sustain Chem Eng ; 10(50): 16624-16633, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36825066

RESUMO

The development of a circular economy is a key target to reduce our dependence on fossil fuels and create more sustainable processes. Concerning hydrogen as an energy vector, the use of liquid organic hydrogen carriers is a promising strategy, but most of them present limitations for hydrogen release, such as harsh reaction conditions, poor recyclability, and low-value byproducts. Herein, we present a novel sustainable methodology to produce value-added silicon precursors and concomitant hydrogen via dehydrogenative coupling by using an air- and water-stable cobalt-based catalyst synthesized from cheap and commercially available starting materials. This methodology is applied to the one-pot synthesis of a wide range of alkoxy-substituted silanes using different hydrosilanes and terminal alkenes as reactants in alcohols as green solvents under mild reaction conditions (room temperature and 0.1 mol % cobalt loading). We also demonstrate that the selectivity toward hydrosilylation/hydroalkoxysilylation can be fully controlled by varying the alcohol/water ratio. This implies the development of a circular approach for hydrosilylation/hydroalkoxysilylation reactions, which is unprecedented in this research field up to date. Kinetic and in situ spectroscopic studies (electron paramagnetic resonance, nuclear magnetic resonance, and electrospray ionization mass spectrometry), together with density functional theory simulations, further provide a detailed mechanistic picture of the dehydrogenative coupling and subsequent hydrosilylation. Finally, we illustrate the application of our catalytic system in the synthesis of an industrially relevant polymer precursor coupled with the production of green hydrogen on demand.

5.
Angew Chem Int Ed Engl ; 60(14): 7845-7850, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33645907

RESUMO

Dianionic hyponitrite (N2 O22- ) is often proposed, based on model complexes, as the key intermediate in reductive coupling of nitric oxide to nitrous oxide at the bimetallic active sites of heme-copper oxidases and nitric oxide reductases. In this work, we examine the gas-solid reaction of nitric oxide with the metal-organic framework CuI -ZrTpmC* with a suite of in situ spectroscopies and density functional theory simulations, and identify an unusual chelating N2 O2.- intermediate. These results highlight the advantage provided by site-isolation in metal-organic frameworks (MOFs) for studying important reaction intermediates, and provide a mechanistic scenario compatible with the proposed one-electron couple in these enzymes.

6.
Dalton Trans ; 49(23): 7932-7937, 2020 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32490461

RESUMO

A combined computational and experimental approach demonstrates the accelerating role of deaggregation agents, especially HMPA, in the Li-catalysed hydrosilylation of acetophenone in THF solution under very mild conditions.

7.
J Am Chem Soc ; 141(23): 9292-9304, 2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-31117650

RESUMO

Mononuclear and dinuclear copper species were synthesized at the nodes of an NU-1000 metal-organic framework (MOF) via cation exchange and subsequent oxidation at 200 °C in oxygen. Copper-exchanged MOFs are active for selectively converting methane to methanol at 150-200 °C. At 150 °C and 1 bar methane, approximately a third of the copper centers are involved in converting methane to methanol. Methanol productivity increased by 3-4-fold and selectivity increased from 70% to 90% by increasing the methane pressure from 1 to 40 bar. Density functional theory showed that reaction pathways on various copper sites are able to convert methane to methanol, the copper oxyl sites with much lower free energies of activation. Combining studies of the stoichiometric activity with characterization by in situ X-ray absorption spectroscopy and density functional theory, we conclude that dehydrated dinuclear copper oxyl sites formed after activation at 200 °C are responsible for the activity.

8.
Nat Commun ; 10(1): 2076, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-31061386

RESUMO

Production of 1-butene, a major monomer in polymer industry, is dominated by homogeneous protocols via ethylene dimerization. Homogeneous catalysts can achieve high selectivity but require large amounts of activators and solvents, and exhibit poor recyclability; in turn, heterogeneous systems are robust but lack selectivity. Here we show how the precise engineering of metal-organic frameworks (MOFs) holds promise for a sustainable process. The key to the (Ru)HKUST-1 MOF activity is the intrapore reactant condensation that enhances ethylene dimerization with high selectivity (> 99% 1-butene) and high stability (> 120 h) in the absence of activators and solvents. According to spectroscopy, kinetics, and modeling, the engineering of defective nodes via controlled thermal approaches rules the activity, while intrapore ethylene condensation accounts for selectivity and stability. The combination of well-defined actives sites with the concentration effect arising from condensation regimes paves the way toward the development of robust MOF catalysts for diverse gas-phase reactions.

9.
Chemphyschem ; 20(20): 2702-2711, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30957930

RESUMO

Truxene derivatives, due to their molecular structure and properties, are good candidates for the passivation of defects when deposited onto hybrid lead halide perovskite thin films. Moreover, their semiconductor characteristics can be tailored through the modification of their chemical structure, which allows-upon light irradiation- the interfacial charge transfer between the perovskite film and the truxene molecules. In this work, we analysed the use of the molecules as surface passivation agents and their use in complete functional solar cells. We observed that these molecules reduce the non-radiative carrier recombination dynamics in the perovskite thin film through the supramolecular complex formation between the Truxene molecule and the Pb2+ defects at the perovskite surface. Interestingly, this supramolecular complexation neither affect the carrier recombination kinetics nor the carriers collection but induced noticeable hysteresis on the photocurrent vs voltage curves of the solar cells under 1 sun illumination.

10.
J Phys Chem Lett ; 10(3): 513-517, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30645127

RESUMO

Increasing the activity of the nitrogen reduction reaction while slowing the detrimental hydrogen evolution reaction is a key challenge in current electrocatalysis to provide a sustainable route to ammonia. Recently, nanoparticles in ionic liquid (IL) environments have been found to boost the selectivity of electrochemical synthesis of ammonia from dinitrogen at room temperature. Here, we use for the first time a fully atomistic representation of metal-IL interfaces at the density functional theory level to understand experimental evidence, with particular focus on the rate and selectivity determining formation of N2H intermediates compared to hydrogen evolution. We find that decorating the metal surface with fluorinated ILs creates specific H-bond interactions between Ru-N2H and IL anions, stabilizing this intermediate and thus driving the selectivity of the electrochemical process.

11.
Nat Nanotechnol ; 13(8): 702-707, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29941887

RESUMO

Palladium-catalysed cross-coupling reactions, central tools in fine-chemical synthesis, predominantly employ soluble metal complexes despite recognized challenges with product purification and catalyst reusability1-3. Attempts to tether these homogeneous catalysts on insoluble carriers have been thwarted by suboptimal stability, which leads to a progressively worsening performance due to metal leaching or clustering4. The alternative application of supported Pd nanoparticles has faced limitations because of insufficient activity under the mild conditions required to avoid thermal degradation of the substrates or products. Single-atom heterogeneous catalysts lie at the frontier5-18. Here, we show that the Pd atoms anchored on exfoliated graphitic carbon nitride (Pd-ECN) capture the advantages of both worlds, as they comprise a solid catalyst that matches the high chemoselectivity and broad functional group tolerance of state-of-the-art homogeneous catalysts for Suzuki couplings, and also demonstrate a robust stability in flow. The adaptive coordination environment within the macroheterocycles of ECN facilitates each catalytic step. The findings illustrate the exciting opportunities presented by nanostructuring single atoms in solid hosts for catalytic processes that remain difficult to heterogenize.

12.
J Org Chem ; 83(15): 8214-8224, 2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-29870252

RESUMO

The spontaneous rearrangement of allylic azides is thought to be a sigmatropic reaction. Presented herein is a detailed investigation into the rearrangement of several allylic azides. A combination of experiments including equilibrium studies, kinetic analysis, density functional theory calculations, and selective 15N-isotopic labeling are included. We conclude that the Winstein rearrangement occurs by the assumed sigmatropic pathway under most conditions. However, racemization was observed for some cyclic allylic azides. A kinetic analysis of this process is provided, which supports a previously undescribed ionic pathway.


Assuntos
Compostos Alílicos/química , Azidas/química , Catálise , Estereoisomerismo
13.
J Am Chem Soc ; 140(10): 3751-3759, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29458253

RESUMO

Some metal-organic frameworks (MOFs) incorporate nodes that are metal oxide clusters such as Zr6O8. Vacancies on the node surfaces, accidental or by design, act as catalytic sites. Here, we report elucidation of the chemistry of Zr6O8 nodes in the MOFs UiO-66 and UiO-67 having used infrared and nuclear magnetic resonance spectroscopies to determine the ligands on the node surfaces originating from the solvents and modifiers used in the syntheses and having elucidated the catalytic properties of the nodes for ethanol dehydration, which takes place selectively to make diethyl ether but not ethylene at 473-523 K. Density functional theory calculations show that the key to the selective catalysis is the breaking of node-linker bonds (or the accidental adjacency of open/defect sites) that allows catalytically fruitful bonding of the reactant ethanol to neighboring sites on the nodes, facilitating the bimolecular ether formation through an SN2 mechanism.

14.
ACS Cent Sci ; 4(1): 5-19, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29392172

RESUMO

Recent progress in the synthesis and characterization of metal-organic frameworks (MOFs) has opened the door to an increasing number of possible catalytic applications. The great versatility of MOFs creates a large chemical space, whose thorough experimental examination becomes practically impossible. Therefore, computational modeling is a key tool to support, rationalize, and guide experimental efforts. In this outlook we survey the main methodologies employed to model MOFs for catalysis, and we review selected recent studies on the functionalization of their nodes. We pay special attention to catalytic applications involving natural gas conversion.

15.
Angew Chem Int Ed Engl ; 57(7): 1949-1953, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29314562

RESUMO

Amino-functionalized zirconium-based metal-organic frameworks (MOFs) have shown unprecedented catalytic activity compared to non-functionalized analogues for hydrolysis of organophosphonate-based toxic chemicals. Importantly, the effect of the amino group on the catalytic activity is significantly higher in the case of UiO-66-NH2 , where the amino groups reside near the node, compared to UiO-67-m-NH2 , where they are directed away from the node. Herein, we show that the proximity of the amino group is crucial for fast catalytic activity towards hydrolysis of organophosphonate-based nerve agents. The generality of the observed amine-proximity-dictated catalytic activity has been tested on two different MOF systems which have different topology. DFT calculations reveal that amino groups on all the MOFs studied are not acting as Brønsted bases; instead they control the microsolvation environment at the Zr6 -node active site and therefore increase the overall catalytic rates.


Assuntos
Aminas/química , Agentes Neurotóxicos/química , Catálise , Hidrólise , Estruturas Metalorgânicas/química , Zircônio/química
16.
Inorg Chem ; 57(4): 2064-2071, 2018 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-29381341

RESUMO

Density functional theory (DFT) is employed to characterize in detail the mechanism for the ring-opening polymerization (ROP) of ε-caprolactone catalyzed by iron alkoxide complexes bearing redox-active bis(imino)pyridine ligands. The combination of iron with the non-innocent bis(imino)pyridine ligand permits comparison of catalytic activity as a function of oxidation state (and overall spin state). The reactivities of aryl oxide versus alkoxide initiators for the ROP of ε-caprolactone are also examined. An experimental test of a computational prediction reveals an Fe(III) bis(imino)pyridine bis-neopentoxide complex to be competent for ROP of ε-caprolactone.

17.
Chemphyschem ; 19(8): 959-966, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29247484

RESUMO

Copper is ubiquitous and its one-electron redox chemistry is central to many catalytic processes. Modeling such chemistry requires electronic structure methods capable of the accurate prediction of ionization energies (IEs) for compounds including copper in different oxidation states and supported by various ligands. Herein, we estimate IEs for 12 mononuclear Cu species previously reported in the literature by using 21 modern density functionals and the DLPNO-CCSD(T) wave function theory model; we consider extrapolated values of the latter to provide reference values of acceptable accuracy. Our results reveal a considerable diversity in functional performance. Although there is nearly always at least one functional that performs well for any given species, there are none that do so for every member of the test set, and certain cases are particularly pathological. Over the entire test set, the SOGGA11-X functional performs best with a mean unsigned error (MUE) of 0.22 eV. PBE0, ωB97X-D, CAM-B3LYP, M11-L, B3LYP, and M11 exhibit MUEs ranging between 0.23 and 0.34 eV. When including relativistic effects with the zero-order regular approximation, ωB97X-D, CAM-B3LYP, and PBE0 are found to provide the best accuracy.

18.
Inorg Chem ; 56(15): 8739-8743, 2017 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-28742330

RESUMO

Zr-based metal-organic frameworks (MOFs) are promising supports for copper-based catalysts able to activate methane. Homo- and heterobimetal-functionalized NU-1000 MOF nodes were selected to computationally screen the effect of ancillary metals for C-H bond activation, allowing us to correlate activation free energies with chemical descriptors.

19.
J Phys Chem A ; 121(31): 5932-5939, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28703600

RESUMO

Noninnocent (redox-active) ligands are increasingly exploited in the design of coordination compounds of earth-abundant transition metals having interesting reactive and catalytic activities. Particular examples of such ligands include those in the pyridine(diimine) (also referred to as bis(imino)pyridine) family. The electronic structures of these compounds are characterized by significant complexity, such that routine single-reference methodologies, for example, Kohn-Sham density functional theory, may be challenged to describe them physically, that is, with quantitatively accurate descriptions of geometries, charge distributions, and spin-state energy separations. We report here RASSCF/RASPT2 calculations on iron pyridine(diimine) complexes over three formal oxidation states that illustrate the highly multiconfigurational characters of these compounds in general and that also offer insights into their electronic ground states and charge distributions.

20.
J Am Chem Soc ; 139(30): 10294-10301, 2017 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-28613861

RESUMO

Copper oxide clusters synthesized via atomic layer deposition on the nodes of the metal-organic framework (MOF) NU-1000 are active for oxidation of methane to methanol under mild reaction conditions. Analysis of chemical reactivity, in situ X-ray absorption spectroscopy, and density functional theory calculations are used to determine structure/activity relations in the Cu-NU-1000 catalytic system. The Cu-loaded MOF contained Cu-oxo clusters of a few Cu atoms. The Cu was present under ambient conditions as a mixture of ∼15% Cu+ and ∼85% Cu2+. The oxidation of methane on Cu-NU-1000 was accompanied by the reduction of 9% of the Cu in the catalyst from Cu2+ to Cu+. The products, methanol, dimethyl ether, and CO2, were desorbed with the passage of 10% water/He at 135 °C, giving a carbon selectivity for methane to methanol of 45-60%. Cu oxo clusters stabilized in NU-1000 provide an active, first generation MOF-based, selective methane oxidation catalyst.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...