Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1157933, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36938034

RESUMO

[This corrects the article DOI: 10.3389/fpls.2022.958350.].

2.
Front Plant Sci ; 13: 958350, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36247549

RESUMO

If food and feed production are to keep up with world demand in the face of climate change, continued progress in understanding and utilizing both genetic and epigenetic sources of crop variation is necessary. Progress in plant breeding has traditionally been thought to be due to selection for spontaneous DNA sequence mutations that impart desirable phenotypes. These spontaneous mutations can expand phenotypic diversity, from which breeders can select agronomically useful traits. However, it has become clear that phenotypic diversity can be generated even when the genome sequence is unaltered. Epigenetic gene regulation is a mechanism by which genome expression is regulated without altering the DNA sequence. With the development of high throughput DNA sequencers, it has become possible to analyze the epigenetic state of the whole genome, which is termed the epigenome. These techniques enable us to identify spontaneous epigenetic mutations (epimutations) with high throughput and identify the epimutations that lead to increased phenotypic diversity. These epimutations can create new phenotypes and the causative epimutations can be inherited over generations. There is evidence of selected agronomic traits being conditioned by heritable epimutations, and breeders may have historically selected for epiallele-conditioned agronomic traits. These results imply that not only DNA sequence diversity, but the diversity of epigenetic states can contribute to increased phenotypic diversity. However, since the modes of induction and transmission of epialleles and their stability differ from that of genetic alleles, the importance of inheritance as classically defined also differs. For example, there may be a difference between the types of epigenetic inheritance important to crop breeding and crop production. The former may depend more on longer-term inheritance whereas the latter may simply take advantage of shorter-term phenomena. With the advances in our understanding of epigenetics, epigenetics may bring new perspectives for crop improvement, such as the use of epigenetic variation or epigenome editing in breeding. In this review, we will introduce the role of epigenetic variation in plant breeding, largely focusing on DNA methylation, and conclude by asking to what extent new knowledge of epigenetics in crop breeding has led to documented cases of its successful use.

3.
Plant Cell Environ ; 45(10): 3157-3170, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35864560

RESUMO

Plant root absorbs water and nutrients from the soil, and the root apoplastic fluid (AF) is an important intermediate between cells and the surrounding environment. The acid growth theory suggests that an acidic AF is needed for cell wall expansion during root growth. However, technical limitations have precluded the quantification of root apoplastic fluid pH (AF-pH). Here, we used Green-enhanced Nano-lantern (GeNL), a chimeric protein of the luciferase NanoLuc (Nluc) and the green fluorescent protein mNeonGreen (mNG), as a ratiometric pH indicator based on the pH dependency of bioluminescence resonance energy transfer efficiency from Nluc to mNG. Luminescence spectrum of GeNL changed reciprocally from pH 4.5 to 7.5, with a pKa of 5.5. By fusing GeNL to a novel signal peptide from Arabidopsis thaliana Cellulase 1, we localised GeNL in A. thaliana AF. We visualised AF dynamics at subcellular resolution over 30 min and determined flow velocity in the maturation zone to be 0.97± 0.06 µm/s. We confirmed that the developing root AF is acidic in the pH range of 5.1-5.7, suggesting that the AF-pH is tightly regulated during root elongation. These results support the acid growth theory and provide evidence for AF-pH maintenance despite changes in ambient pH.


Assuntos
Arabidopsis , Arabidopsis/metabolismo , Concentração de Íons de Hidrogênio , Luciferases/metabolismo , Raízes de Plantas/metabolismo
4.
Plant Biotechnol (Tokyo) ; 38(2): 197-204, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34393598

RESUMO

Flower opening is an important phenomenon in plant that indicates the readiness of the flower for pollination leading to petal expansion and pigmentation. This phenomenon has great impact on crop yield, which makes researches of its mechanism attractive for both plant physiology study and agriculture. Gene promoters directing the expression in petal during the petal cell wall modification and expansion when flower opens could be a convenient tool to analyze or monitor gene expression targeting this event. However, there are no reports of isolated gene promoters that can direct gene expression in petal or petal limb during the rapid cell wall dynamics when the flower opens. Xyloglucan endotransglucosylase/hydrolase 7 (XTH7), a cell wall modifying enzyme, was reported having up-regulated gene expression in the petal of Arabidopsis thaliana and Petunia hybrida. In this study, we fused a 1,904 bp length P. hybrida XTH7 promoter with a gene encoding a bright bioluminescent protein (Green enhanced Nano-lantern) to report gene expression and observed petal up-regulated bioluminescence activity by means of a consumer-grade camera. More importantly, this novel promoter demonstrated up-regulated activity in the petal limb of P. hybrida matured flower during flower opening. P. hybrida XTH7 promoter would be a useful tool for flowering study, especially for petal expansion research during flower opening.

5.
Sci Rep ; 11(1): 14994, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294849

RESUMO

Using the lux operon (luxCDABE) of bacterial bioluminescence system as an autonomous luminous reporter has been demonstrated in bacteria, plant and mammalian cells. However, applications of bacterial bioluminescence-based imaging have been limited because of its low brightness. Here, we engineered the bacterial luciferase (heterodimer of luxA and luxB) by fusion with Venus, a bright variant of yellow fluorescent protein, to induce bioluminescence resonance energy transfer (BRET). By using decanal as an externally added substrate, color change and ten-times enhancement of brightness was achieved in Escherichia coli when circularly permuted Venus was fused to the C-terminus of luxB. Expression of the Venus-fused luciferase in human embryonic kidney cell lines (HEK293T) or in Nicotiana benthamiana leaves together with the substrate biosynthesis-related genes (luxC, luxD and luxE) enhanced the autonomous bioluminescence. We believe the improved luciferase will forge the way towards the potential development of autobioluminescent reporter system allowing spatiotemporal imaging in live cells.


Assuntos
Proteínas de Bactérias/genética , Luciferases Bacterianas/genética , Proteínas Luminescentes/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Bactérias/metabolismo , Técnicas de Transferência de Energia por Ressonância de Bioluminescência , Clonagem Molecular , Células HEK293 , Humanos , Luciferases Bacterianas/metabolismo , Proteínas Luminescentes/metabolismo , Plantas Geneticamente Modificadas , Engenharia de Proteínas , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento , Nicotiana/metabolismo
6.
PLoS One ; 16(3): e0242530, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33788851

RESUMO

Long noncoding RNAs (lncRNAs) are RNA fragments that generally do not code for a protein but are involved in epigenetic gene regulation. In this study, lncRNAs of Brassica rapa were classified into long intergenic noncoding RNAs, natural antisense RNAs, and intronic noncoding RNAs and their expression analyzed in relation to genome-wide 24-nt small interfering RNAs (siRNAs), DNA methylation, and histone H3 lysine 27 trimethylation marks (H3K27me3). More than 65% of the lncRNAs analyzed consisted of one exon, and more than 55% overlapped with inverted repeat regions (IRRs). Overlap of lncRNAs with IRRs or genomic regions encoding for 24-nt siRNAs resulted in increased DNA methylation levels when both were present. LncRNA did not overlap greatly with H3K27me3 marks, but the expression level of intronic noncoding RNAs that did coincide with H3K27me3 marks was higher than without H3K27me3 marks. The Brassica genus comprises important vegetables and oil seed crops grown across the world. B. rapa is a diploid (AA genome) thought to be one of the ancestral species of both B. juncea (AABB genome) and B. napus (AACC) through genome merging (allotetrapolyploidization). Complex genome restructuring and epigenetic alterations are thought to be involved in these allotetrapolyploidization events. Comparison of lncRNAs between B. rapa and B. nigra, B. oleracea, B. juncea, and B. napus showed the highest conservation with B. oleracea. This study presents a comprehensive analysis of the epigenome structure of B. rapa at multi-epigenetic levels (siRNAs, DNA methylation, H3K27me3, and lncRNAs) and identified a suite of candidate lncRNAs that may be epigenetically regulated in the Brassica genus.


Assuntos
Brassica rapa/genética , Metilação de DNA , Histonas/genética , Proteínas de Plantas/genética , RNA Longo não Codificante/metabolismo , RNA Interferente Pequeno/metabolismo , Diploide , Epigênese Genética , Ontologia Genética , Genoma de Planta , Histonas/metabolismo , Sequências Repetidas Invertidas/genética , Folhas de Planta/genética , Proteínas de Plantas/metabolismo , RNA Longo não Codificante/genética , RNA de Plantas/metabolismo , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
DNA Res ; 26(5): 433-443, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31622476

RESUMO

Brassica rapa L. is an important vegetable and oilseed crop. We investigated the distribution of the histone mark tri-methylation of H3K27 (H3K27me3) in B. rapa and its role in the control of gene expression at two stages of development (2-day cotyledons and 14-day leaves) and among paralogs in the triplicated genome. H3K27me3 has a similar distribution in two inbred lines, while there was variation of H3K27me3 sites between tissues. Sites that are specific to 2-day cotyledons have increased transcriptional activity, and low levels of H3K27me3 in the gene body region. In 14-day leaves, levels of H3K27me3 were associated with decreased gene expression. In the triplicated genome, H3K27me3 is associated with paralogs that have tissue-specific expression. Even though B. rapa and Arabidopsis thaliana are not closely related within the Brassicaceae, there is conservation of H3K27me3-marked sites in the two species. Both B. rapa and A. thaliana require vernalization for floral initiation with FLC being the major controlling locus. In all four BrFLC paralogs, low-temperature treatment increases H3K27me3 at the proximal nucleation site reducing BrFLC expression. Following return to normal temperature growth conditions, H3K27me3 spreads along all four BrFLC paralogs providing stable repression of the gene.


Assuntos
Brassica rapa/metabolismo , Epigênese Genética , Código das Histonas , Histonas/metabolismo , Poliploidia , Arabidopsis/genética , Arabidopsis/metabolismo , Brassica rapa/genética , Regulação da Expressão Gênica de Plantas , Metilação , Processamento de Proteína Pós-Traducional
8.
Sci Rep ; 9(1): 13843, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31554847

RESUMO

There is a wide variation of flowering time among lines of Brassica rapa L. Most B. rapa leafy (Chinese cabbage etc.) or root (turnip) vegetables require prolonged cold exposure for flowering, known as vernalization. Premature bolting caused by low temperature leads to a reduction in the yield/quality of these B. rapa vegetables. Therefore, high bolting resistance is an important breeding trait, and understanding the molecular mechanism of vernalization is necessary to achieve this goal. In this study, we demonstrated that BrFRIb functions as an activator of BrFLC in B. rapa. We showed a positive correlation between the steady state expression levels of the sum of the BrFLC paralogs and the days to flowering after four weeks of cold treatment, suggesting that this is an indicator of the vernalization requirement. We indicate that BrFLCs are repressed by the accumulation of H3K27me3 and that the spreading of H3K27me3 promotes stable FLC repression. However, there was no clear relationship between the level of H3K27me3 in the BrFLC and the vernalization requirement. We also showed that if there was a high vernalization requirement, the rate of repression of BrFLC1 expression following prolonged cold treatments was lower.


Assuntos
Brassica rapa/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brassica rapa/classificação , Brassica rapa/genética , Resposta ao Choque Frio , Flores/classificação , Flores/genética , Flores/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Histonas/metabolismo , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Análise de Sequência de DNA , Verduras/classificação , Verduras/genética , Verduras/fisiologia
9.
Sci Rep ; 9(1): 9302, 2019 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-31243302

RESUMO

Brassica rapa L. is an important agricultural crop that requires a period of prolonged cold for flowering. This process is known as vernalization. Studies have shown that long noncoding RNAs (lncRNAs) play important roles in abiotic stress responses and several cold-responsive noncoding RNAs have been suggested to be involved in vernalization. We examined the transcriptome of the Chinese cabbage inbred line (B. rapa L. var. pekinensis) RJKB-T24, and identified 1,444 long intergenic noncoding RNAs (lincRNAs), 551 natural antisense transcripts (NATs), and 93 intronic noncoding RNAs (incRNAs); 549 of the 2,088 lncRNAs significantly altered their expression in response to four weeks of cold treatment. Most differentially expressed lncRNAs did not lead to a change of expression levels in mRNAs covering or near lncRNAs, suggesting that the transcriptional responses to four weeks of cold treatment in lncRNA and mRNA are independent. However, some differentially expressed mRNAs had NATs with expression altered in the same direction. These genes were categorized as having an abiotic stress response, suggesting that the paired-expression may play a role in the transcriptional response to vernalization or cold treatment. We also identified short-term cold treatment induced NATs in BrFLC and BrMAF genes, which are involved in vernalization. The lncRNAs we identified differed from those reported in Arabidopsis thaliana, suggesting the role of lncRNAs in vernalization differ between these two species.


Assuntos
Brassica rapa/genética , Temperatura Baixa , RNA Longo não Codificante/genética , RNA de Plantas/genética , Arabidopsis/genética , Produtos Agrícolas/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Íntrons , Oligonucleotídeos Antissenso , Plantas Geneticamente Modificadas/genética , RNA Antissenso/genética , RNA-Seq , Estresse Fisiológico , Transcriptoma
10.
Breed Sci ; 68(3): 375-380, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30100805

RESUMO

The genome-wide characterization of single nucleotide polymorphism (SNP) between cultivars or between inbred lines contributes to the creation of genetic markers that are important for plant breeding. Functional markers derived from polymorphisms within genes that affect phenotypic variation are especially valuable in plant breeding. Here, we report on the genome re-sequencing and analysis of the two parental inbred lines of the commercial F1 hybrid Chinese cabbage cultivar "W77". Through the genome-wide identification and classification of the SNPs and indels present in each parental line, we identified about 1,500 putative non-functional genes in each parent. We designed cleaved amplified polymorphic sequence (CAPS) markers using specific mutations found at Eco RI restriction sites in the parental lines and confirmed their Mendelian segregation by constructing a linkage map using 96 F2 plants derived from the F1 hybrid cultivar, "W77". Our results and data will be a useful genomic resource for future studies of gene function and metagenomic studies in Chinese cabbage.

11.
DNA Res ; 25(5): 511-520, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29982343

RESUMO

Epigenetic gene regulation is crucial to plant life and can involve dynamic interactions between various histone modifications, DNA methylation, and small RNAs. Detailed analysis of epigenome information is anticipated to reveal how the DNA sequence of the genome is translated into the plant's phenotype. The aim of this study was to map the DNA methylation state at the whole genome level and to clarify the relationship between DNA methylation and transcription, small RNA expression, and histone H3 lysine 9 di-methylation (H3K9me2) in Brassica rapa. We performed whole genome bisulfite sequencing, small RNA sequencing, and chromatin immunoprecipitation sequencing using H3K9me2 antibody in a Chinese cabbage inbred line, RJKB-T24, and examined the impact of epigenetic states on transcription. Cytosine methylation in DNA was analysed in different sequence contexts (CG, CHG, and CHH) (where H could be A, C, or T) and position (promoter, exon, intron, terminator, interspersed repeat regions), and the H3K9me2 and 24 nucleotide small interfering RNAs (24 nt-siRNA) were overlaid onto the B. rapa reference genome. The epigenome was compared with that of Arabidopsis thaliana and the relationship between the position of DNA methylation and gene expression, and the involvement of 24 nt siRNAs and H3K9me2 are discussed.


Assuntos
Brassica rapa/genética , Brassica rapa/metabolismo , Metilação de DNA , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Histonas/metabolismo , Pequeno RNA não Traduzido , Imunoprecipitação da Cromatina , Epigênese Genética , Estudo de Associação Genômica Ampla , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala
12.
Breed Sci ; 68(2): 145-158, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29875598

RESUMO

Heterosis or hybrid vigor is a phenomenon where hybrid progeny have superior performance compared to their parental inbred lines. This is important in the use of F1 hybrid cultivars in many crops and vegetables. However, the molecular mechanism of heterosis is not clearly understood. Gene interactions between the two genomes such as dominance, overdominance, and epistasis have been suggested to explain the increased biomass and yield. Genetic analyses of F1 hybrids in maize, rice, and canola have defined a large number of quantitative trait loci, which may contribute to heterosis. Recent molecular analyses of transcriptomes together with reference to the epigenome of the parents and hybrids have begun to uncover new facts about the generation of heterosis. These include the identification of gene expression changes in hybrids, which may be important for heterosis, the role of epigenetic processes in heterosis, and the development of stable high yielding lines.

13.
Plant Cell Rep ; 37(1): 87-101, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29058037

RESUMO

Epigenetic regulation, covalent modification of DNA and changes in histone proteins are closely linked to plant development and stress response through flexibly altering the chromatin structure to regulate gene expression. In this review, we will illustrate the importance of epigenetic influences by discussing three agriculturally important traits of Brassicaceae. (1) Vernalization, an acceleration of flowering by prolonged cold exposure regulated through epigenetic silencing of a central floral repressor, FLOWERING LOCUS C. This is associated with cold-dependent repressive histone mark accumulation, which confers competency of consequence vegetative-to-reproductive phase transition. (2) Hybrid vigor, in which an F1 hybrid shows superior performance to the parental lines. Combination of distinct epigenomes with different DNA methylation states between parental lines is important for increase in growth rate in a hybrid progeny. This is independent of siRNA-directed DNA methylation but dependent on the chromatin remodeler DDM1. (3) Self-incompatibility, a reproductive mating system to prevent self-fertilization. This is controlled by the S-locus consisting of SP11 and SRK which are responsible for self/non-self recognition. Because self-incompatibility in Brassicaceae is sporophytically controlled, there are dominance relationships between S haplotypes in the stigma and pollen. The dominance relationships in the pollen rely on de novo DNA methylation at the promoter region of a recessive allele, which is triggered by siRNA production from a flanking region of a dominant allele.


Assuntos
Brassicaceae/genética , Produtos Agrícolas/genética , Epigênese Genética , Vigor Híbrido/genética , Autoincompatibilidade em Angiospermas/genética , Proteínas de Arabidopsis/genética , Brassicaceae/fisiologia , Montagem e Desmontagem da Cromatina/fisiologia , Produtos Agrícolas/fisiologia , Metilação de DNA , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Haplótipos , Proteínas de Domínio MADS/genética , Pólen/genética , RNA Interferente Pequeno , Fatores de Transcrição/genética
14.
Plant Cell Rep ; 36(12): 1841-1854, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28819684

RESUMO

KEY MESSAGE: Resistant and susceptible lines in Brassica rapa have different immune responses against Fusarium oxysporum inoculation. Fusarium yellows caused by Fusarium oxysporum f. sp. conglutinans (Foc) is an important disease of Brassicaceae; however, the mechanism of how host plants respond to Foc is still unknown. By comparing with and without Foc inoculation in both resistant and susceptible lines of Chinese cabbage (Brassica rapa var. pekinensis), we identified differentially expressed genes (DEGs) between the bulked inoculated (6, 12, 24, and 72 h after inoculation (HAI)) and non-inoculated samples. Most of the DEGs were up-regulated by Foc inoculation. Quantitative real-time RT-PCR showed that most up-regulated genes increased their expression levels from 24 HAI. An independent transcriptome analysis at 24 and 72 HAI was performed in resistant and susceptible lines. GO analysis using up-regulated genes at 24 HAI indicated that Foc inoculation activated systemic acquired resistance (SAR) in resistant lines and tryptophan biosynthetic process and responses to chitin and ethylene in susceptible lines. By contrast, GO analysis using up-regulated genes at 72 HAI showed the overrepresentation of some categories for the defense response in susceptible lines but not in the resistant lines. We also compared DEGs between B. rapa and Arabidopsis thaliana after F. oxysporum inoculation at the same time point, and identified genes related to defense response that were up-regulated in the resistant lines of Chinese cabbage and A. thaliana. Particular genes that changed expression levels overlapped between the two species, suggesting that they are candidates for genes involved in the resistance mechanisms against F. oxysporum.


Assuntos
Brassica rapa/microbiologia , Fusarium/fisiologia , Transcriptoma/genética , Brassica/efeitos dos fármacos , Brassica/genética , Brassica/microbiologia , Brassica rapa/efeitos dos fármacos , Brassica rapa/genética , Quitina/farmacologia , Etilenos/farmacologia , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia
15.
Sci Rep ; 7: 45166, 2017 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-28338020

RESUMO

Defense mechanisms of plant genomes can epigenetically inactivate repetitive sequences and exogenous transgenes. Loss of mutant phenotypes in intronic T-DNA insertion lines by interaction with another T-DNA locus, termed T-DNA suppression, has been observed in Arabidopsis thaliana, although the molecular basis of establishment and maintenance of T-DNA suppression is poorly understood. Here we show that maintenance of T-DNA suppression requires heterochromatinisation of T-DNA sequences and the nuclear proteins, INCREASED IN BONSAI METHYLATION 2 (IBM2) and ENHANCED DOWNY MILDEW 2 (EDM2), which prevent ectopic 3' end processing of mRNA in atypically long introns containing T-DNA sequences. Initiation of T-DNA suppression is mediated by the canonical RdDM pathway after hybridisation of two T-DNA strains, accompanied by DNA hypermethylation of T-DNA sequences in the F1 generation. Our results reveal the presence of a genome surveillance mechanism through genome hybridisation that masks repetitive DNAs intruding into transcription units.


Assuntos
Arabidopsis/genética , Epigênese Genética , Íntrons , Transgenes , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Proc Natl Acad Sci U S A ; 113(43): E6704-E6711, 2016 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-27791039

RESUMO

Hybrid vigor or heterosis refers to the superior performance of F1 hybrid plants over their parents. Heterosis is particularly important in the production systems of major crops. Recent studies have suggested that epigenetic regulation such as DNA methylation is involved in heterosis, but the molecular mechanism of heterosis is still unclear. To address the epigenetic contribution to heterosis in Arabidopsis thaliana, we used mutant genes that have roles in DNA methylation. Hybrids between C24 and Columbia-0 (Col) without RNA polymerase IV (Pol IV) or methyltransferase I (MET1) function did not reduce the level of biomass heterosis (as evaluated by rosette diameter). Hybrids with a mutation in decrease in dna methylation 1 (ddm1) showed a decreased heterosis level. Vegetative heterosis in the ddm1 mutant hybrid was reduced but not eliminated; a complete reduction could result if there was a change in methylation at all loci critical for generating the level of heterosis, whereas if only a proportion of the loci have methylation changes there may only be a partial reduction in heterosis.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Metilação de DNA , Proteínas de Ligação a DNA/genética , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Fatores de Transcrição/genética , Arabidopsis/metabolismo , Biomassa , Cruzamentos Genéticos , DNA (Citosina-5-)-Metiltransferases/deficiência , DNA (Citosina-5-)-Metiltransferases/genética , Proteínas de Ligação a DNA/deficiência , RNA Polimerases Dirigidas por DNA/deficiência , RNA Polimerases Dirigidas por DNA/genética , Vigor Híbrido , Mutação , Fatores de Transcrição/deficiência
17.
Breed Sci ; 66(3): 333-49, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27436943

RESUMO

Inter-specific hybrids are a useful source for increasing genetic diversity. Some reproductive barriers before and/or after fertilization prevent production of hybrid plants by inter-specific crossing. Therefore, techniques to overcome the reproductive barrier have been developed, and have contributed to hybridization breeding. In recent studies, identification of molecules involved in plant reproduction has been studied to understand the mechanisms of reproductive barriers. Revealing the molecular mechanisms of reproductive barriers may allow us to overcome reproductive barriers in inter-specific crossing, and to efficiently produce inter-specific hybrids in cross-combinations that cannot be produced through artificial techniques. Inter-specific hybrid plants can potentially serve as an elite material for plant breeding, produced through the merging of genomes of parental species by allopolyploidization. Allopolyploidization provides some benefits, such as heterosis, increased genetic diversity and phenotypic variability, which are caused by dynamic changes of the genome and epigenome. Understanding of allopolyploidization mechanisms is important for practical utilization of inter-specific hybrids as a breeding material. This review discusses the importance of reproductive barriers and the effect of allopolyploidization in crop breeding programs.

18.
Genes Genet Syst ; 91(1): 1-10, 2016 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-27074983

RESUMO

Epigenetic regulation is crucial for the development of plants and for adaptation to a changing environment. Recently, genome-wide profiles of histone modifications have been determined by a combination of chromatin immunoprecipitation (ChIP) and genomic tiling arrays (ChIP on chip) or ChIP and high-throughput sequencing (ChIP-seq) in species including Arabidopsis thaliana, rice and maize. Validation of ChIP analysis by PCR or qPCR using positive and negative regions of histone modification is necessary. In contrast, information about histone modifications is limited in Chinese cabbage, Brassica rapa. The aim of this study was to develop positive and negative control primer sets for H3K4me3 (trimethylation of the 4(th) lysine of H3), H3K9me2, H3K27me3 and H3K36me3 in B. rapa. The expression and histone modification of four FLC paralogs in B. rapa, before and after vernalization, were examined using the method developed here. After vernalization, expression of all four BrFLC genes was reduced, and accumulation of H3K27me3 was observed in three of them. As with A. thaliana, the vernalization response and stability of FLC repression correlated with the accumulation of H3K27me3. These results suggest that the epigenetic state during vernalization is important for high bolting resistance in B. rapa. The positive and negative control primer sets developed here revealed positive and negative histone modifications in B. rapa that can be used as a control for future studies.


Assuntos
Cromatina/genética , Epigênese Genética/genética , Código das Histonas/genética , Histona Desmetilases/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Brassica rapa/genética , Brassica rapa/crescimento & desenvolvimento , Imunoprecipitação da Cromatina , Primers do DNA , Flores/genética , Regulação da Expressão Gênica de Plantas , Histona Desmetilases/isolamento & purificação
19.
Data Brief ; 6: 229-37, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26862564

RESUMO

Chinese cabbage (Brassica rapa L. var. pekinensis) is an important vegetable in Asia, and most Japanese commercial cultivars of Chinese cabbage use an F1 hybrid seed production system. Self-incompatibility is successfully used for the production of F1 hybrid seeds in B. rapa vegetables to avoid contamination by non-hybrid seeds, and the strength of self-incompatibility is important for harvesting a highly pure F1 seeds. Prediction of agronomically important traits such as disease resistance based on DNA markers is useful. In this dataset, we identified the S haplotypes by DNA markers and evaluated the strength of self-incompatibility in Chinese cabbage inbred lines. The data described the predicted disease resistance to Fusarium yellows or clubroot in 22 Chinese cabbage inbred lines using gene associated or gene linked DNA markers.

20.
PLoS One ; 9(1): e86049, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24465864

RESUMO

In plants, epigenetic regulation is important in normal development and in modulating some agronomic traits. The potential contribution of DNA methylation mediated gene regulation to phenotypic diversity and development in cotton was investigated between cotton genotypes and various tissues. DNA methylation diversity, genetic diversity, and changes in methylation context were investigated using methylation-sensitive amplified polymorphism (MSAP) assays including a methylation insensitive enzyme (BsiSI), and the total DNA methylation level was measured by high-performance liquid chromatography (HPLC). DNA methylation diversity was greater than the genetic diversity in the selected cotton genotypes and significantly different levels of DNA methylation were identified between tissues, including fibre. The higher DNA methylation diversity (CHG methylation being more diverse than CG methylation) in cotton genotypes suggest epigenetic regulation may be important for cotton, and the change in DNA methylation between fibre and other tissues hints that some genes may be epigenetically regulated for fibre development. The novel approach using BsiSI allowed direct comparison between genetic and epigenetic diversity, and also measured CC methylation level that cannot be detected by conventional MSAP.


Assuntos
Metilação de DNA , DNA de Plantas/genética , Gossypium/genética , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Variação Genética , Genótipo , Polimorfismo Genético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...