Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gene ; 928: 148761, 2024 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-39002785

RESUMO

Leukemia stem cells (LSCs) are widely believed to reside in well-characterized bone marrow (BM) niches; however, the capacity of the BM niches to accommodate LSCs is insufficient, and a significant proportion of LSCs are instead maintained in regions outside the BM. The molecular basis for this niche-independent behavior of LSCs remains elusive. Here, we show that integrin-α9 overexpression (ITGA9 OE) plays a pivotal role in the extramedullary maintenance of LSCs by molecularly mimicking the niche-interacting status, through the binding with its soluble ligand, osteopontin (OPN). Retroviral insertional mutagenesis conducted on leukemia-prone Runx-deficient mice identified Itga9 OE as a novel leukemogenic event. Itga9 OE activates Akt and p38MAPK signaling pathways. The elevated Myc expression subsequently enhances ribosomal biogenesis to overcome the cell integrity defect caused by the preexisting Runx alteration. The Itga9-Myc axis, originally discovered in mice, was further confirmed in multiple human acute myeloid leukemia (AML) subtypes, other than RUNX leukemias. In addition, ITGA9 was shown to be a functional LSC marker of the best prognostic value among 14 known LSC markers tested. Notably, the binding of ITGA9 with soluble OPN, a known negative regulator against HSC activation, induced LSC dormancy, while the disruption of ITGA9-soluble OPN interaction caused rapid cell propagation. These findings suggest that the ITGA9 OE increases both actively proliferating leukemia cells and dormant LSCs in a well-balanced manner, thereby maintaining LSCs. The ITGA9 OE would serve as a novel therapeutic target in AML.


Assuntos
Leucemia Mieloide Aguda , Células-Tronco Neoplásicas , Animais , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Humanos , Camundongos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Osteopontina/genética , Osteopontina/metabolismo , Nicho de Células-Tronco , Cadeias alfa de Integrinas/metabolismo , Cadeias alfa de Integrinas/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Regulação Leucêmica da Expressão Gênica , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Camundongos Endogâmicos C57BL , Transdução de Sinais
2.
Exp Hematol ; 137: 104255, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38876252

RESUMO

The genetic lesions that drive acute megakaryoblastic leukemia (AMKL) have not been fully elucidated. To search for genetic alterations in AMKL, we performed targeted deep sequencing in 34 AMKL patient samples and 8 AMKL cell lines and detected frequent genetic mutations in the NOTCH pathway in addition to previously reported alterations in GATA-1 and the JAK-STAT pathway. Pharmacological and genetic NOTCH activation, but not inhibition, significantly suppressed AMKL cell proliferation in both in vitro and in vivo assays employing a patient-derived xenograft model. These results suggest that NOTCH inactivation underlies AMKL leukemogenesis. and NOTCH activation holds the potential for therapeutic application in AMKL.

3.
Biochem Biophys Res Commun ; 722: 150155, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38795454

RESUMO

Runt-related transcription factor (RUNX) family members play critical roles in the development of multiple organs. Mammalian RUNX family members, consisting of RUNX1, RUNX2, and RUNX3, have distinct tissue-specific expression and function. In this study, we examined the spatiotemporal expression patterns of RUNX family members in developing kidneys and analyzed the role of RUNX1 during kidney development. In the developing mouse kidney, RUNX1 protein was strongly expressed in the ureteric bud (UB) tip and weakly expressed in the distal segment of the renal vesicle (RV), comma-shaped body (CSB), and S-shaped body (SSB). In contrast, RUNX2 protein was restricted to the stroma, and RUNX3 protein was only expressed in immune cells. We also analyzed the expression of RUNX family members in the cynomolgus monkey kidney. We found that expression patterns of RUNX2 and RUNX3 were conserved between rodents and primates, whereas RUNX1 was only expressed in the UB tip, not in the RV, CSB, or SSB of cynomolgus monkeys, suggesting a species differences. We further evaluated the roles of RUNX1 using two different conditional knockout mice: Runx1f/f:HoxB7-Cre and Runx1f/f:R26-CreERT2 and found no abnormalities in the kidney. Our findings showed that RUNX1, which is mainly expressed in the UB tip, is not essential for kidney development.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Rim , Animais , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Rim/metabolismo , Rim/embriologia , Rim/crescimento & desenvolvimento , Camundongos , Macaca fascicularis , Regulação da Expressão Gênica no Desenvolvimento , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Subunidades alfa de Fatores de Ligação ao Core/metabolismo , Subunidades alfa de Fatores de Ligação ao Core/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout
4.
EMBO J ; 43(13): 2661-2684, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38811851

RESUMO

The molecular mechanisms governing the response of hematopoietic stem cells (HSCs) to stress insults remain poorly defined. Here, we investigated effects of conditional knock-out or overexpression of Hmga2 (High mobility group AT-hook 2), a transcriptional activator of stem cell genes in fetal HSCs. While Hmga2 overexpression did not affect adult hematopoiesis under homeostasis, it accelerated HSC expansion in response to injection with 5-fluorouracil (5-FU) or in vitro treatment with TNF-α. In contrast, HSC and megakaryocyte progenitor cell numbers were decreased in Hmga2 KO animals. Transcription of inflammatory genes was repressed in Hmga2-overexpressing mice injected with 5-FU, and Hmga2 bound to distinct regions and chromatin accessibility was decreased in HSCs upon stress. Mechanistically, we found that casein kinase 2 (CK2) phosphorylates the Hmga2 acidic domain, promoting its access and binding to chromatin, transcription of anti-inflammatory target genes, and the expansion of HSCs under stress conditions. Notably, the identified stress-regulated Hmga2 gene signature is activated in hematopoietic stem progenitor cells of human myelodysplastic syndrome patients. In sum, these results reveal a TNF-α/CK2/phospho-Hmga2 axis controlling adult stress hematopoiesis.


Assuntos
Caseína Quinase II , Cromatina , Proteína HMGA2 , Células-Tronco Hematopoéticas , Camundongos Knockout , Proteína HMGA2/metabolismo , Proteína HMGA2/genética , Animais , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Humanos , Caseína Quinase II/metabolismo , Caseína Quinase II/genética , Cromatina/metabolismo , Cromatina/genética , Fator de Necrose Tumoral alfa/metabolismo , Hematopoese , Estresse Fisiológico , Fluoruracila/farmacologia , Regeneração , Fosforilação , Síndromes Mielodisplásicas/patologia , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/metabolismo , Camundongos Endogâmicos C57BL
5.
Leuk Res Rep ; 21: 100451, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38444524

RESUMO

IGLL5 is shown to be located near super-enhancer (SE) in B-cell tumors, and this gene is frequently mutated and a target of translocation in B-cell tumors. These results suggest roles of the IGLL5 in tumorigenesis; however, its functional properties have been unclear. We found that two mature B-cell lymphoma cell lines expressed IGLL5 mRNA with Cλ1 segment. JQ1 treatment resulted in down-expression of IGLL5, indicating that IGLL5 is controlled by SE. IGLL5 knockdown induced cell death with down-expression of MYC. Our results suggested that IGLL5 might have a role in survival of mature B-cell tumors and involvement in MYC expression. (100 words).

6.
Blood Cancer Discov ; 5(3): 180-201, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38442309

RESUMO

In many cancers, mortality is associated with the emergence of relapse with multidrug resistance (MDR). Thus far, the investigation of cancer relapse mechanisms has largely focused on acquired genetic mutations. Using acute myeloid leukemia (AML) patient-derived xenografts (PDX), we systematically elucidated a basis of MDR and identified drug sensitivity in relapsed AML. We derived pharmacologic sensitivity for 22 AML PDX models using dynamic BH3 profiling (DBP), together with genomics and transcriptomics. Using in vivo acquired resistant PDXs, we found that resistance to unrelated, narrowly targeted agents in distinct PDXs was accompanied by broad resistance to drugs with disparate mechanisms. Moreover, baseline mitochondrial apoptotic priming was consistently reduced regardless of the class of drug-inducing selection. By applying DBP, we identified drugs showing effective in vivo activity in resistant models. This study implies evasion of apoptosis drives drug resistance and demonstrates the feasibility of the DBP approach to identify active drugs for patients with relapsed AML. SIGNIFICANCE: Acquired resistance to targeted therapy remains challenging in AML. We found that reduction in mitochondrial priming and common transcriptomic signatures was a conserved mechanism of acquired resistance across different drug classes in vivo. Drugs active in vivo can be identified even in the multidrug resistant state by DBP.


Assuntos
Apoptose , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Leucemia Mieloide Aguda , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/genética , Humanos , Apoptose/efeitos dos fármacos , Animais , Camundongos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Resistência a Múltiplos Medicamentos/genética , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Células Precursoras de Granulócitos/efeitos dos fármacos , Células Precursoras de Granulócitos/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
7.
J Leukoc Biol ; 115(6): 1108-1117, 2024 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-38374693

RESUMO

A well-documented Achilles heel of current cancer immunotherapy approaches is T cell exhaustion within solid tumor tissues. The proinflammatory cytokine interleukin (IL)-23 has been utilized to augment chimeric antigen receptor (CAR) T cell survival and tumor immunity. However, in-depth interrogation of molecular events downstream of IL-23/IL-23 receptor signaling is hampered by a paucity of suitable cell models. The current study investigates the differential contribution of IL-2 and IL-23 to the maintenance and differentiation of the IL-23 responsive Kit225 T-cell line. We observed that IL-23 enhanced cellular fitness and survival but was insufficient to drive proliferation. IL-23 rapidly induced phosphorylation of STAT1, STAT3, and STAT4, and messenger RNA expression of IL17A, the archetypal effector cytokine of T helper 17 (Th17) cells, but not their lineage markers RORC and NCR1. These observations suggest that IL-23 endowed Th17/ILC3-like effector function but did not promote their differentiation. In contrast, spontaneous differentiation of Kit225 cells toward a Th17/ILC3-like phenotype was induced by prolonged IL-2 withdrawal. This was marked by strongly elevated basal IL17A and IL17F expression and the secretion of IL-17. Together, our data present Kit225 cells as a valuable model for studying the interplay between cytokines and their contribution to T cell survival, proliferation, and differentiation.


Assuntos
Diferenciação Celular , Interleucina-23 , Interleucina-2 , Células Th17 , Humanos , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Interleucina-17/metabolismo , Interleucina-17/imunologia , Interleucina-2/farmacologia , Interleucina-23/metabolismo , Interleucina-23/imunologia , Transdução de Sinais , Células Th17/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA