Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Natl Cancer Inst ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902947

RESUMO

The incidence of colorectal cancer (CRC) among individuals younger than age 50 (early onset CRC; EOCRC) has substantially increased, yet the etiology and molecular mechanisms underlying this alarming rise remain unclear. We compared tumor-associated T cell repertoires between EOCRC and average-onset CRC (AOCRC) to uncover potentially unique immune microenvironment-related features by age of onset. Our discovery cohort included 242 patients who underwent surgical resection at Cleveland Clinic from 2000 to 2020. EOCRC was defined as age < 50 years at diagnosis (N = 126), and AOCRC as age ≥ 60 years (N = 116). T cell receptor (TCR) abundance and clonality were measured by immunosequencing of tumors. Logistic regression models were used to evaluate the associations between TCR repertoire features and age of onset, adjusting for sex, race, tumor location, and stage. Findings were replicated in 152 EOCRC and 1,984 AOCRC cases from the Molecular Epidemiology of Colorectal Cancer Study. EOCRC tumors had significantly higher TCR diversity compared to AOCRC tumors in the discovery cohort (Odds Ratio (OR):0.44, 95% Confidence Interval (CI):0.32-0.61, p < .0001). This association was also observed in the replication cohort (OR : 0.74, 95% CI : 0.62-0.89, p = .0013). No significant differences in TCR abundance were observed between EOCRC and AOCRC in either cohort. Higher TCR diversity, suggesting a more diverse intratumoral T cell response, is more frequently observed in EOCRC than AOCRC. Further studies are warranted to investigate the role of T cell diversity and the adaptive immune response more broadly in the etiology and outcomes of EOCRC.

2.
Nat Immunol ; 24(2): 280-294, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36543960

RESUMO

T cell dysfunctionality prevents the clearance of chronic infections and cancer. Furthermore, epigenetic programming in dysfunctional CD8+ T cells limits their response to immunotherapies, including immune checkpoint blockade (ICB). However, it is unclear which upstream signals drive acquisition of dysfunctional epigenetic programs, and whether therapeutically targeting these signals can remodel terminally dysfunctional T cells to an ICB-responsive state. Here we innovate an in vitro model system of stable human T cell dysfunction and show that chronic TGFß1 signaling in posteffector CD8+ T cells accelerates their terminal dysfunction through stable epigenetic changes. Conversely, boosting bone morphogenetic protein (BMP) signaling while blocking TGFß1 preserved effector and memory programs in chronically stimulated human CD8+ T cells, inducing superior responses to tumors and synergizing the ICB responses during chronic viral infection. Thus, rebalancing TGFß1/BMP signals provides an exciting new approach to unleash dysfunctional CD8+ T cells and enhance T cell immunotherapies.


Assuntos
Linfócitos T CD8-Positivos , Viroses , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA