Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 14859, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684323

RESUMO

We analyze the renormalization group fixed point of the two-dimensional Ising model at criticality. In contrast with expectations from tensor network renormalization (TNR), we show that a simple, explicit analytic description of this fixed point using operator-algebraic renormalization (OAR) is possible. Specifically, the fixed point is characterized in terms of spin-spin correlation functions. Explicit error bounds for the approximation of continuum correlation functions are given.

2.
Nat Commun ; 14(1): 5847, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730793

RESUMO

When a generic quantum system is prepared in a simple initial condition, it typically equilibrates toward a state that can be described by a thermal ensemble. A known exception is localized systems that are non-ergodic and do not thermalize; however, local observables are still believed to become stationary. Here we demonstrate that this general picture is incomplete by constructing product states that feature periodic high-fidelity revivals of the full wavefunction and local observables that oscillate indefinitely. The system neither equilibrates nor thermalizes. This is analogous to the phenomenon of weak ergodicity breaking due to many-body scars and challenges aspects of the current phenomenology of many-body localization, such as the logarithmic growth of the entanglement entropy. To support our claim, we combine analytic arguments with large-scale tensor network numerics for the disordered Heisenberg chain. Our results hold for arbitrarily long times in chains of 160 sites up to machine precision.

3.
Phys Rev Lett ; 128(23): 231602, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35749193

RESUMO

We use the formalism of strange correlators to construct a critical classical lattice model in two dimensions with the Haagerup fusion category H_{3} as input data. We present compelling numerical evidence in the form of finite entanglement scaling to support a Haagerup conformal field theory (CFT) with central charge c=2. Generalized twisted CFT spectra are numerically obtained through exact diagonalization of the transfer matrix, and the conformal towers are separated in the spectra through their identification with the topological sectors. It is further argued that our model can be obtained through an orbifold procedure from a larger lattice model with input Z(H_{3}), which is the simplest modular tensor category that does not admit an algebraic construction. This provides a counterexample for the conjecture that all rational CFT can be constructed from standard methods.

4.
Nat Commun ; 11(1): 808, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-32041956

RESUMO

Neural networks enjoy widespread success in both research and industry and, with the advent of quantum technology, it is a crucial challenge to design quantum neural networks for fully quantum learning tasks. Here we propose a truly quantum analogue of classical neurons, which form quantum feedforward neural networks capable of universal quantum computation. We describe the efficient training of these networks using the fidelity as a cost function, providing both classical and efficient quantum implementations. Our method allows for fast optimisation with reduced memory requirements: the number of qudits required scales with only the width, allowing deep-network optimisation. We benchmark our proposal for the quantum task of learning an unknown unitary and find remarkable generalisation behaviour and a striking robustness to noisy training data.

5.
Nat Commun ; 11(1): 250, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937760

RESUMO

Identification of the optimal quantum metrological protocols in realistic many particle quantum models is in general a challenge that cannot be efficiently addressed by the state-of-the-art numerical and analytical methods. Here we provide a comprehensive framework exploiting matrix product operators (MPO) type tensor networks for quantum metrological problems. The maximal achievable estimation precision as well as the optimal probe states in previously inaccessible regimes can be identified including models with short-range noise correlations. Moreover, the application of infinite MPO (iMPO) techniques allows for a direct and efficient determination of the asymptotic precision in the limit of infinite particle numbers. We illustrate the potential of our framework in terms of an atomic clock stabilization (temporal noise correlation) example as well as magnetic field sensing (spatial noise correlations). As a byproduct, the developed methods may be used to calculate the fidelity susceptibility-a parameter widely used to study phase transitions.

6.
Nat Commun ; 9(1): 3792, 2018 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-30224701

RESUMO

What is the energy cost of extracting entanglement from complex quantum systems? Operationally, we may wish to actually extract entanglement. Conceptually, we may wish to physically understand the entanglement distribution as a function of energy. This is important, especially for quantum field theory vacua, which are extremely entangled. Here we build a theory to understand the energy cost of entanglement extraction. First, we consider a toy model, and then we define the entanglement temperature, relating energy cost to extracted entanglement. Next, we give a physical argument quantifying the energy cost of entanglement extraction in some quantum field vacua. There the energy cost depends on the spatial dimension: in one dimension, for example, it grows exponentially with extracted entanglement. Next, we provide approaches to bound the energy cost of extracting entanglement more generally. Finally, we look at spin chain models numerically to calculate the entanglement temperature using matrix product states.

7.
Phys Rev Lett ; 112(25): 257202, 2014 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-25014826

RESUMO

We use the matrix product state formalism to construct stationary scattering states of elementary excitations in generic one-dimensional quantum lattice systems. Our method is applied to the spin-1 Heisenberg antiferromagnet, for which we calculate the full magnon-magnon S matrix for arbitrary momenta and spin, the two-particle contribution to the spectral function, and higher order corrections to the magnetization curve. As our method provides an accurate microscopic representation of the interaction between elementary excitations, we envisage the description of low-energy dynamics of one-dimensional spin chains in terms of these particlelike excitations.

8.
Phys Rev Lett ; 111(8): 080401, 2013 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-24010415

RESUMO

For quantum lattice systems with local interactions, the Lieb-Robinson bound serves as an alternative for the strict causality of relativistic systems and allows the proof of many interesting results, in particular, when the energy spectrum exhibits an energy gap. In this Letter, we show that for translation invariant systems, simultaneous eigenstates of energy and momentum with an eigenvalue that is separated from the rest of the spectrum in that momentum sector can be arbitrarily well approximated by building a momentum superposition of a local operator acting on the ground state. The error satisfies an exponential bound in the size of the support of the local operator, with a rate determined by the gap below and above the targeted eigenvalue. We show this explicitly for the Affleck-Kennedy-Lieb-Tasaki model and discuss generalizations and applications of our result.

9.
Phys Rev Lett ; 111(2): 020402, 2013 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-23889372

RESUMO

We introduce a variational method for calculating dispersion relations of translation invariant (1+1)-dimensional quantum field theories. The method is based on continuous matrix product states and can be implemented efficiently. We study the critical Lieb-Liniger model as a benchmark and excellent agreement with the exact solution is found. Additionally, we observe solitonic signatures of Lieb's type II excitation. In addition, a nonintegrable model is introduced where a U(1)-symmetry breaking term is added to the Lieb-Liniger Hamiltonian. For this model we find evidence of a nontrivial bound-state excitation in the dispersion relation.

10.
Phys Rev Lett ; 110(9): 090501, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23496696

RESUMO

As the realization of a fully operational quantum computer remains distant, quantum simulation, whereby one quantum system is engineered to simulate another, becomes a key goal of great practical importance. Here we report on a variational method exploiting the natural physics of cavity QED architectures to simulate strongly interacting quantum fields. Our scheme is broadly applicable to any architecture involving tunable and strongly nonlinear interactions with light; as an example, we demonstrate that existing cavity devices could simulate models of strongly interacting bosons. The scheme can be extended to simulate systems of entangled multicomponent fields, beyond the reach of existing classical simulation methods.

11.
Phys Rev Lett ; 110(10): 100402, 2013 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-23521233

RESUMO

We show how to construct renormalization group (RG) flows of quantum field theories in real space, as opposed to the usual Wilsonian approach in momentum space. This is achieved by generalizing the multiscale entanglement renormalization ansatz to continuum theories. The variational class of wave functions arising from this RG flow are translation invariant and exhibits an entropy-area law. We illustrate the construction for a free nonrelativistic boson model, and argue that the full power of the construction should emerge in the case of interacting theories.

12.
Phys Rev Lett ; 110(4): 040403, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-25166141

RESUMO

What singles out quantum mechanics as the fundamental theory of nature? Here we study local measurements in generalized probabilistic theories (GPTs) and investigate how observational limitations affect the production of correlations. We find that if only a subset of typical local measurements can be made then all the bipartite correlations produced in a GPT can be simulated to a high degree of accuracy by quantum mechanics. Our result makes use of a generalization of Dvoretzky's theorem for GPTs. The tripartite correlations can go beyond those exhibited by quantum mechanics, however.

13.
Rep Prog Phys ; 75(2): 022001, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22790342

RESUMO

In recent years we have seen the birth of a new field known as Hamiltonian complexity lying at the crossroads between computer science and theoretical physics. Hamiltonian complexity is directly concerned with the question: how hard is it to simulate a physical system? Here I review the foundational results, guiding problems, and future directions of this emergent field.

14.
Phys Rev Lett ; 107(7): 070601, 2011 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-21902379

RESUMO

We develop a new algorithm based on the time-dependent variational principle applied to matrix product states to efficiently simulate the real- and imaginary-time dynamics for infinite one-dimensional quantum lattices. This procedure (i) is argued to be optimal, (ii) does not rely on the Trotter decomposition and thus has no Trotter error, (iii) preserves all symmetries and conservation laws, and (iv) has low computational complexity. The algorithm is illustrated by using both an imaginary-time and a real-time example.

15.
Phys Rev Lett ; 105(25): 251601, 2010 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-21231573

RESUMO

We extend the recently introduced continuous matrix product state variational class to the setting of (1+1)-dimensional relativistic quantum field theories. This allows one to overcome the difficulties highlighted by Feynman concerning the application of the variational procedure to relativistic theories, and provides a new way to regularize quantum field theories. A fermionic version of the continuous matrix product state is introduced which is manifestly free of fermion doubling and sign problems. We illustrate the power of the formalism by studying the momentum occupation for free massive Dirac fermions and the chiral symmetry breaking in the Gross-Neveu model.

16.
Phys Rev Lett ; 105(26): 260401, 2010 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-21231632

RESUMO

We show how continuous matrix product states of quantum fields can be described in terms of the dissipative nonequilibrium dynamics of a lower-dimensional auxiliary boundary field by demonstrating that the spatial correlation functions of the bulk field correspond to the temporal statistics of the boundary field. This equivalence (1) illustrates an intimate connection between the theory of continuous quantum measurement and quantum field theory, (2) gives an explicit construction of the boundary field allowing the extension of real-space renormalization group methods to arbitrary dimensional quantum field theories without the introduction of a lattice parameter, and (3) yields a novel interpretation of recent cavity QED experiments in terms of quantum field theory, and hence paves the way toward observing genuine quantum phase transitions in such zero-dimensional driven quantum systems.

17.
Phys Rev Lett ; 101(14): 140503, 2008 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-18851512

RESUMO

In this Letter we make progress on a long-standing open problem of Aaronson and Ambainis [Theory Comput. 1, 47 (2005)]: we show that if U is a sparse unitary operator with a gap Delta in its spectrum, then there exists an approximate logarithm H of U which is also sparse. The sparsity pattern of H gets more dense as 1/Delta increases. This result can be interpreted as a way to convert between local continuous-time and local discrete-time quantum processes. As an example we show that the discrete-time coined quantum walk can be realized stroboscopically from an approximately local continuous-time quantum walk.

18.
Phys Rev Lett ; 99(16): 167201, 2007 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-17995284

RESUMO

We investigate the propagation of information through the disordered XY model. We find that all correlations, both classical and quantum, are exponentially suppressed outside of an effective light cone whose radius grows at most logarithmically with |t|.

19.
Phys Rev Lett ; 98(16): 160406, 2007 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-17501401

RESUMO

We formulate and prove a de Finetti representation theorem for finitely exchangeable states of a quantum system consisting of k infinite-dimensional subsystems. The theorem is valid for states that can be written as the partial trace of a pure state |Psi/Psi| chosen from a family of subsets {Cn} of the full symmetric subspace for n subsystems. We show that such states become arbitrarily close to mixtures of pure power states as n increases. We give a second equivalent characterization of the family {Cn}.

20.
Phys Rev Lett ; 97(15): 150404, 2006 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-17155303

RESUMO

We establish a general scaling law for the entanglement of a large class of ground states and dynamically evolving states of quantum spin chains: we show that the geometric entropy of a distinguished block saturates, and hence follows an entanglement-boundary law. These results apply to any ground state of a gapped model resulting from dynamics generated by a local Hamiltonian, as well as, dually, to states that are generated via a sudden quench of an interaction as recently studied in the case of dynamics of quantum phase transitions. We achieve these results by exploiting ideas from quantum information theory and tools provided by Lieb-Robinson bounds. We also show that there exist noncritical fermionic systems and equivalent spin chains with rapidly decaying interactions violating this entanglement-boundary law. Implications for the classical simulatability are outlined.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA