Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 2358, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33883554

RESUMO

Global warming has driven a loss of dissolved oxygen in the ocean in recent decades. We demonstrate the potential for an additional anthropogenic driver of deoxygenation, in which zooplankton consumption of microplastic reduces the grazing on primary producers. In regions where primary production is not limited by macronutrient availability, the reduction of grazing pressure on primary producers causes export production to increase. Consequently, organic particle remineralisation in these regions increases. Employing a comprehensive Earth system model of intermediate complexity, we estimate this additional remineralisation could decrease water column oxygen inventory by as much as 10% in the North Pacific and accelerate global oxygen inventory loss by an extra 0.2-0.5% relative to 1960 values by the year 2020. Although significant uncertainty accompanies these estimates, the potential for physical pollution to have a globally significant biogeochemical signal that exacerbates the consequences of climate warming is a novel feedback not yet considered in climate research.


Assuntos
Aquecimento Global , Microplásticos/toxicidade , Modelos Biológicos , Oxigênio/análise , Água do Mar/análise , Poluentes Químicos da Água/toxicidade , Zooplâncton/efeitos dos fármacos , Zooplâncton/fisiologia , Animais , Simulação por Computador , Ecossistema , Microplásticos/farmacocinética , Oceanos e Mares , Poluentes Químicos da Água/farmacocinética
2.
Sci Rep ; 10(1): 16670, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-33028852

RESUMO

Every year, about four percent of the plastic waste generated worldwide ends up in the ocean. What happens to the plastic there is poorly understood, though a growing body of evidence suggests it is rapidly spreading throughout the global ocean. The mechanisms of this spread are straightforward for buoyant larger plastics that can be accurately modelled using Lagrangian particle models. But the fate of the smallest size fractions (the microplastics) are less straightforward, in part because they can aggregate in sinking marine snow and faecal pellets. This biologically-mediated pathway is suspected to be a primary surface microplastic removal mechanism, but exactly how it might work in the real ocean is unknown. We search the parameter space of a new microplastic model embedded in an earth system model to show that biological uptake can significantly shape global microplastic inventory and distributions and even account for the budgetary "missing" fraction of surface microplastic, despite being an inefficient removal mechanism. While a lack of observational data hampers our ability to choose a set of "best" model parameters, our effort represents a first tool for quantitatively assessing hypotheses for microplastic interaction with ocean biology at the global scale.

3.
Sci Rep ; 9(1): 20244, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882758

RESUMO

The ocean is the main source of thermal inertia in the climate system. Ocean heat uptake during recent decades has been quantified using ocean temperature measurements. However, these estimates all use the same imperfect ocean dataset and share additional uncertainty due to sparse coverage, especially before 2007. Here, we provide an independent estimate by using measurements of atmospheric oxygen (O2) and carbon dioxide (CO2) - levels of which increase as the ocean warms and releases gases - as a whole ocean thermometer. We show that the ocean gained 1.29 ± 0.79 × 1022 Joules of heat per year between 1991 and 2016, equivalent to a planetary energy imbalance of 0.80 ± 0.49 W watts per square metre of Earth's surface. We also find that the ocean-warming effect that led to the outgassing of O2 and CO2 can be isolated from the direct effects of anthropogenic emissions and CO2 sinks. Our result - which relies on high-precision O2 atmospheric measurements dating back to 1991 - leverages an integrative Earth system approach and provides much needed independent confirmation of heat uptake estimated from ocean data.

4.
Nature ; 573(7775): 614, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31554976

RESUMO

This Article has been retracted; see accompanying Retraction Note.

5.
J Adv Model Earth Syst ; 11(11): 3343-3361, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32025278

RESUMO

Numerical models have been highly successful in simulating global carbon and nutrient cycles in today's ocean, together with observed spatial and temporal patterns of chlorophyll and plankton biomass at the surface. With this success has come some confidence in projecting the century-scale response to continuing anthropogenic warming. There is also increasing interest in using such models to understand the role of plankton ecosystems in past oceans. However, today's marine environment is the product of billions of years of continual evolution-a process that continues today. In this paper, we address the questions of whether an assumption of species invariance is sufficient, and if not, under what circumstances current model projections might break down. To do this, we first identify the key timescales and questions asked of models. We then review how current marine ecosystem models work and what alternative approaches are available to account for evolution. We argue that for timescales of climate change overlapping with evolutionary timescales, accounting for evolution may to lead to very different projected outcomes regarding the timescales of ecosystem response and associated global biogeochemical cycling. This is particularly the case for past extinction events but may also be true in the future, depending on the eventual degree of anthropogenic disruption. The discipline of building new numerical models that incorporate evolution is also hugely beneficial in itself, as it forces us to question what we know about adaptive evolution, irrespective of its quantitative role in any specific event or environmental changes.

6.
Nature ; 563(7729): 105-108, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30382201

RESUMO

The ocean is the main source of thermal inertia in the climate system1. During recent decades, ocean heat uptake has been quantified by using hydrographic temperature measurements and data from the Argo float program, which expanded its coverage after 20072,3. However, these estimates all use the same imperfect ocean dataset and share additional uncertainties resulting from sparse coverage, especially before 20074,5. Here we provide an independent estimate by using measurements of atmospheric oxygen (O2) and carbon dioxide (CO2)-levels of which increase as the ocean warms and releases gases-as a whole-ocean thermometer. We show that the ocean gained 1.33 ± 0.20  × 1022 joules of heat per year between 1991 and 2016, equivalent to a planetary energy imbalance of 0.83 ± 0.11 watts per square metre of Earth's surface. We also find that the ocean-warming effect that led to the outgassing of O2 and CO2 can be isolated from the direct effects of anthropogenic emissions and CO2 sinks. Our result-which relies on high-precision O2 measurements dating back to 19916-suggests that ocean warming is at the high end of previous estimates, with implications for policy-relevant measurements of the Earth response to climate change, such as climate sensitivity to greenhouse gases7 and the thermal component of sea-level rise8.

7.
Science ; 320(5878): 893-7, 2008 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-18487184

RESUMO

Increasing quantities of atmospheric anthropogenic fixed nitrogen entering the open ocean could account for up to about a third of the ocean's external (nonrecycled) nitrogen supply and up to approximately 3% of the annual new marine biological production, approximately 0.3 petagram of carbon per year. This input could account for the production of up to approximately 1.6 teragrams of nitrous oxide (N2O) per year. Although approximately 10% of the ocean's drawdown of atmospheric anthropogenic carbon dioxide may result from this atmospheric nitrogen fertilization, leading to a decrease in radiative forcing, up to about two-thirds of this amount may be offset by the increase in N2O emissions. The effects of increasing atmospheric nitrogen deposition are expected to continue to grow in the future.


Assuntos
Atmosfera , Atividades Humanas , Nitrogênio , Espécies Reativas de Nitrogênio , Água do Mar , Carbono , Dióxido de Carbono/metabolismo , Ecossistema , Humanos , Nitrogênio/metabolismo , Fixação de Nitrogênio , Oceanos e Mares , Espécies Reativas de Nitrogênio/metabolismo
8.
Nature ; 450(7169): 545-8, 2007 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-17994008

RESUMO

The oceans have absorbed nearly half of the fossil-fuel carbon dioxide (CO2) emitted into the atmosphere since pre-industrial times, causing a measurable reduction in seawater pH and carbonate saturation. If CO2 emissions continue to rise at current rates, upper-ocean pH will decrease to levels lower than have existed for tens of millions of years and, critically, at a rate of change 100 times greater than at any time over this period. Recent studies have shown effects of ocean acidification on a variety of marine life forms, in particular calcifying organisms. Consequences at the community to ecosystem level, in contrast, are largely unknown. Here we show that dissolved inorganic carbon consumption of a natural plankton community maintained in mesocosm enclosures at initial CO2 partial pressures of 350, 700 and 1,050 microatm increases with rising CO2. The community consumed up to 39% more dissolved inorganic carbon at increased CO2 partial pressures compared to present levels, whereas nutrient uptake remained the same. The stoichiometry of carbon to nitrogen drawdown increased from 6.0 at low CO2 to 8.0 at high CO2, thus exceeding the Redfield carbon:nitrogen ratio of 6.6 in today's ocean. This excess carbon consumption was associated with higher loss of organic carbon from the upper layer of the stratified mesocosms. If applicable to the natural environment, the observed responses have implications for a variety of marine biological and biogeochemical processes, and underscore the importance of biologically driven feedbacks in the ocean to global change.


Assuntos
Dióxido de Carbono/análise , Carbono/análise , Carbono/metabolismo , Água do Mar/química , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Clorofila A , Diatomáceas/metabolismo , Ecossistema , Concentração de Íons de Hidrogênio , Biologia Marinha , Nitratos/metabolismo , Nitrogênio/metabolismo , Noruega , Oceanos e Mares , Pressão Parcial , Fitoplâncton/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...