Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Hum Neurosci ; 15: 621263, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34239423

RESUMO

BACKGROUND: While it is well-known that deficits in motor performance and brain structural connectivity occur in the course of healthy aging, it is still unclear if and how these changes are related to each other. While some cross-sectional studies suggest that white matter (WM) microstructure is positively associated with motor function in healthy older adults, more evidence is needed. Moreover, longitudinal data is required to estimate whether similar associations can be found between trajectories of change in WM microstructure and motor function. The current study addresses this gap by investigating age-associations and longitudinal changes in WM microstructure and motor function, and the cross-sectional (level-level) and longitudinal (level-change, change-change) association between these two domains. METHOD: We used multiple-occasion data (covering 4 years) from a large sample (N = 231) of healthy older adults from the Longitudinal Healthy Aging Brain (LHAB) database. To measure WM microstructure, we used diffusion-weighted imaging data to compute mean FA in three selected WM tracts [forceps minor (FMIN); superior longitudinal fasciculus (SLF); corticospinal tract (CST)]. Motor function was measured via two motor speed tests (grooved pegboard, finger tapping) and one motor strength test (grip force test), separately for the left and the right hand. The statistical analysis was conducted with longitudinal growth curve models in the structural equation modeling framework. RESULTS: The results revealed longitudinal decline and negative cross-sectional age-associations for mean WM FA in the FMIN and SLF, and for motor function in all tests, with a higher vulnerability for left than right hand motor performance. Regarding cross-domain associations, we found a significant positive level-level correlation among mean WM FA in the FMIN with motor speed. Mean FA in SLF and CST was not correlated with motor performance measures, and none of the level-change or change-change associations were significant. Overall, our results (a) provide important insights into aging-related changes of fine motor abilities and FA in selected white matter tracts associated with motor control, (b) support previous cross-sectional work showing that neural control of movement in older adults also involves brain structures outside the core motor system and (c) align with the idea that, in healthy aging, compensatory mechanisms may be in place and longer time delays may be needed to reveal level-change or change-change associations.

2.
Prog Brain Res ; 263: 109-136, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34243885

RESUMO

Tinnitus is a heterogeneous phenomenon indexed by various EEG oscillatory profiles. Applying neurofeedback (NFB) with the aim of changing these oscillatory patterns not only provides help for those who suffer from the phantom percept, but a promising foundation from which to probe influential factors. The reliable attribution of influential factors that potentially predict oscillatory changes during the course of NFB training may lead to the identification of subgroups of individuals that are more or less responsive to NFB training. The present study investigated oscillatory trajectories of delta (3-4Hz) and individual alpha (8.5-12Hz) during 15 NFB training sessions, based on a Latent Growth Curve framework. First, we found the desired enhancement of alpha, while delta was stable throughout the NFB training. Individual differences in tinnitus-specific variables and general-, as well as health-related quality of life predictors were largely unrelated to oscillatory change prior to and across the training. Only the predictors age and sex at baseline were clearly related to slow-wave delta, particularly so for older female individuals who showed higher delta power values from the start. Second, we confirmed a hierarchical cross-frequency association between the two frequency bands; however, in opposing directions to those anticipated in tinnitus. The establishment of individually tailored NFB protocols would boost this therapy's effectiveness in the treatment of tinnitus. In our analysis, we propose a conceptual groundwork toward this goal of developing more targeted treatment.


Assuntos
Neurorretroalimentação , Zumbido , Eletroencefalografia , Feminino , Humanos , Qualidade de Vida , Zumbido/terapia
3.
Front Hum Neurosci ; 15: 635687, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33935669

RESUMO

Cross-sectional studies indicate that normal aging is accompanied by decreases in brain structure. Longitudinal studies, however, are relatively rare and inconsistent regarding their outcomes. Particularly the heterogeneity of methods, sample characteristics and the high inter-individual variability in older adults prevent the deduction of general trends. Therefore, the current study aimed to compare longitudinal age-related changes in brain structure (measured through cortical thickness) in two large independent samples of healthy older adults (n = 161 each); the Longitudinal Healthy Aging Brain (LHAB) database project at the University of Zurich, Switzerland, and 1000BRAINS at the Research Center Juelich, Germany. Annual percentage changes in the two samples revealed stable to slight decreases in cortical thickness over time. After correction for major covariates, i.e., baseline age, sex, education, and image quality, sample differences were only marginally present. Results suggest that general trends across time might be generalizable over independent samples, assuming the same methodology is used, and similar sample characteristics are present.

4.
Hum Brain Mapp ; 41(17): 4829-4845, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32857461

RESUMO

Healthy aging is associated with changes in cognitive performance and functional brain organization. In fact, cross-sectional studies imply lower modularity and significant heterogeneity in modular architecture across older subjects. Here, we used a longitudinal dataset consisting of four occasions of resting-state-fMRI and cognitive testing (spanning 4 years) in 150 healthy older adults. We applied a graph-theoretic analysis to investigate the time-evolving modular structure of the whole-brain network, by maximizing the multilayer modularity across four time points. Global flexibility, which reflects the tendency of brain nodes to switch between modules across time, was significantly higher in healthy elderly than in a temporal null model. Further, global flexibility, as well as network-specific flexibility of the default mode, frontoparietal control, and somatomotor networks, were significantly associated with age at baseline. These results indicate that older age is related to higher variability in modular organization. The temporal metrics were not associated with simultaneous changes in processing speed or learning performance in the context of memory encoding. Finally, this approach provides global indices for longitudinal change across a given time span and it may contribute to uncovering patterns of modular variability in healthy and clinical aging populations.


Assuntos
Envelhecimento/fisiologia , Cognição/fisiologia , Conectoma , Rede de Modo Padrão/fisiologia , Rede Nervosa/fisiologia , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Estudos Transversais , Rede de Modo Padrão/diagnóstico por imagem , Feminino , Seguimentos , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Testes Neuropsicológicos
5.
Neuroimage ; 214: 116680, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32105885

RESUMO

Healthy aging is associated with weaker functional connectivity within resting state brain networks and stronger functional interaction between these networks. This phenomenon has been characterized as reduced functional segregation and has been investigated mainly in cross-sectional studies. Here, we used a longitudinal dataset which consisted of four occasions of resting state fMRI and psychometric cognitive ability data, collected from a sample of healthy older adults (baseline N = 232, age range: 64-87 y, age M = 70.8 y), to investigate the functional segregation of several well-defined resting state networks encompassing the whole brain. We characterized the ratio of within-network and between-network correlations via the well-established segregation index. Our findings showed a decrease over a 4-year interval in the functional segregation of the default mode, frontoparietal control and salience ventral attention networks. In contrast, we showed an increase in the segregation of the limbic network over the same interval. More importantly, the rate of change in functional segregation of the frontoparietal control network was associated with the rate of change in processing speed. These findings support the hypothesis of functional dedifferentiation in healthy aging as well as its role in cognitive function in elderly.


Assuntos
Encéfalo/fisiopatologia , Cognição/fisiologia , Rede de Modo Padrão/fisiopatologia , Envelhecimento Saudável , Idoso , Idoso de 80 Anos ou mais , Atenção , Mapeamento Encefálico/métodos , Estudos Transversais , Feminino , Envelhecimento Saudável/patologia , Envelhecimento Saudável/fisiologia , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Descanso
6.
Front Aging Neurosci ; 11: 298, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824294

RESUMO

Age-related differences in white matter (WM) microstructure have been linked to lower performance in tasks of processing speed in healthy older individuals. However, only few studies have examined this link in a longitudinal setting. These investigations have been limited to the correlation of simultaneous changes in WM microstructure and processing speed. Still little is known about the nature of age-related changes in WM microstructure, i.e., regionally distinct vs. global changes. In the present study, we addressed these open questions by exploring whether previous changes in WM microstructure were related to subsequent changes in processing speed: (a) 1 year later; or (b) 2 years later. Furthermore, we investigated whether age-related changes in WM microstructure were regionally specific or global. We used data from four occasions (covering 4 years) of the Longitudinal Healthy Aging Brain (LHAB) database project (N = 232; age range at baseline = 64-86). As a measure of WM microstructure, we used mean fractional anisotropy (FA) in 10 major WM tracts averaged across hemispheres. Processing speed was measured with four cognitive tasks. Statistical analyses were conducted with bivariate latent change score (LCS) models. We found, for the first time, evidence for lagged couplings between preceding changes in FA and subsequent changes in processing speed 2 years, but not 1 year later in some of the WM tracts (anterior thalamic radiation, superior longitudinal fasciculus). Our results supported the notion that FA changes were different between regional WM tracts rather than globally shared, with some tracts showing mean declines in FA, and others remaining relatively stable across 4 years.

7.
Psychol Sci ; 30(9): 1259-1272, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31322983

RESUMO

How does the content of visual working memory influence the way we process the visual environment? We addressed this question using the steady-state visual evoked potential (SSVEP), which provides a discernible measure of visuocortical activation to multiple stimuli simultaneously. Fifty-six adults were asked to remember a set of two oriented gratings. During the retention interval, two frequency-tagged oriented gratings were presented to probe the visuocortical processing of matching versus mismatching orientations relative to the memory set. Matching probes prompted an increased visuocortical response, whereas mismatching stimuli were suppressed. This suggests that the visual cortex prioritizes attentional selection of memory-relevant features at the expense of non-memory-relevant features. When two memory items were probed simultaneously, visuocortical amplification alternated between the two stimuli at a rate of 3 Hz to 4 Hz, consistent with the rate of attentional sampling of sensory events from the external world. These results suggest a serial, single-item attentional sampling of remembered features.


Assuntos
Atenção/fisiologia , Potenciais Evocados Visuais/fisiologia , Memória de Curto Prazo/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Córtex Visual/fisiologia , Adolescente , Adulto , Eletroencefalografia , Feminino , Humanos , Masculino , Adulto Jovem
8.
Rev Neurosci ; 31(1): 1-57, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31194693

RESUMO

Little is still known about the neuroanatomical substrates related to changes in specific cognitive abilities in the course of healthy aging, and the existing evidence is predominantly based on cross-sectional studies. However, to understand the intricate dynamics between developmental changes in brain structure and changes in cognitive ability, longitudinal studies are needed. In the present article, we review the current longitudinal evidence on correlated changes between magnetic resonance imaging-derived measures of brain structure (e.g. gray matter/white matter volume, cortical thickness), and laboratory-based measures of fluid cognitive ability (e.g. intelligence, memory, processing speed) in healthy older adults. To theoretically embed the discussion, we refer to the revised Scaffolding Theory of Aging and Cognition. We found 31 eligible articles, with sample sizes ranging from n = 25 to n = 731 (median n = 104), and participant age ranging from 19 to 103. Several of these studies report positive correlated changes for specific regions and specific cognitive abilities (e.g. between structures of the medial temporal lobe and episodic memory). However, the number of studies presenting converging evidence is small, and the large methodological variability between studies precludes general conclusions. Methodological and theoretical limitations are discussed. Clearly, more empirical evidence is needed to advance the field. Therefore, we provide guidance for future researchers by presenting ideas to stimulate theory and methods for development.


Assuntos
Envelhecimento/fisiologia , Encéfalo/crescimento & desenvolvimento , Cognição , Modelos Neurológicos , Animais , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Humanos
9.
Hum Brain Mapp ; 40(8): 2305-2319, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30666760

RESUMO

Normal aging is accompanied by an interindividually variable decline in cognitive abilities and brain structure. This variability, in combination with methodical differences and differences in sample characteristics across studies, pose a major challenge for generalizability of results from different studies. Therefore, the current study aimed at cross-validating age-related differences in cognitive abilities and brain structure (measured using cortical thickness [CT]) in two large independent samples, each consisting of 228 healthy older adults aged between 65 and 85 years: the Longitudinal Healthy Aging Brain (LHAB) database (University of Zurich, Switzerland) and the 1000BRAINS (Research Centre Jülich, Germany). Participants from LHAB showed significantly higher education, physical well-being, and cognitive abilities (processing speed, concept shifting, reasoning, semantic verbal fluency, and vocabulary). In contrast, CT values were larger for participants of 1000BRAINS. Though, both samples showed highly similar age-related differences in both, cognitive abilities and CT. These effects were in accordance with functional aging theories, for example, posterior to anterior shift in aging as was shown for the default mode network. Thus, the current two-study approach provides evidence that independently on heterogeneous metrics of brain structure or cognition across studies, age-related effects on cognitive ability and brain structure can be generalized over different samples, assuming the same methodology is used.


Assuntos
Envelhecimento/fisiologia , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Cognição/fisiologia , Função Executiva/fisiologia , Neuroimagem , Desempenho Psicomotor/fisiologia , Pensamento/fisiologia , Idoso , Idoso de 80 Anos ou mais , Encéfalo/diagnóstico por imagem , Córtex Cerebral/anatomia & histologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiologia , Bases de Dados Factuais , Feminino , Humanos , Estudos Longitudinais , Masculino
10.
Front Psychol ; 9: 1997, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30405487

RESUMO

The notion of bilingual advantages in executive functions (EF) is based on the assumption that the demands posed by cross-language interference serve as EF training. These training effects should be more pronounced the more cross-language interference bilinguals have to overcome when managing their two languages. In the present study, we investigated the proposed link between linguistic and EF performance using the similarity between the two languages spoken since childhood as a proxy for different levels of cross-language interference. We assessed the effect of linearly increasing language dissimilarity on linguistic and EF performance in multiple tasks in four groups of young adults (aged 18-33): German monolinguals (n = 24), bidialectals (n = 25; German and Swiss German dialect), bilinguals speaking two languages of the same Indo-European ancestry (n = 24; e.g., German-English), or bilinguals speaking two languages of different ancestry (n = 24; e.g., German-Turkish). Bayesian linear-mixed effects modeling revealed substantial evidence for a linear effect of language similarity on linguistic accuracy, with better performance for participants with more similar languages and monolinguals. However, we did not obtain evidence for the presence of a similarity effect on EF performance. Furthermore, language experience did not modulate EF performance, even when testing the effect of continuous indicators of bilingualism (e.g., age of acquisition, proficiency, daily foreign language usage). These findings question the theoretical assumption that life-long experience in managing cross-language interference serves as EF training.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...