Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3328, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637517

RESUMO

Hypersonic vehicles must withstand extreme conditions during flights that exceed five times the speed of sound. These systems have the potential to facilitate rapid access to space, bolster defense capabilities, and create a new paradigm for transcontinental earth-to-earth travel. However, extreme aerothermal environments create significant challenges for vehicle materials and structures. This work addresses the critical need to develop resilient refractory alloys, composites, and ceramics. We will highlight key design principles for critical vehicle areas such as primary structures, thermal protection, and propulsion systems; the role of theory and computation; and strategies for advancing laboratory-scale materials to manufacturable flight-ready components.

2.
Nature ; 625(7993): 66-73, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38172364

RESUMO

The need for improved functionalities in extreme environments is fuelling interest in high-entropy ceramics1-3. Except for the computational discovery of high-entropy carbides, performed with the entropy-forming-ability descriptor4, most innovation has been slowly driven by experimental means1-3. Hence, advancement in the field needs more theoretical contributions. Here we introduce disordered enthalpy-entropy descriptor (DEED), a descriptor that captures the balance between entropy gains and enthalpy costs, allowing the correct classification of functional synthesizability of multicomponent ceramics, regardless of chemistry and structure. To make our calculations possible, we have developed a convolutional algorithm that drastically reduces computational resources. Moreover, DEED guides the experimental discovery of new single-phase high-entropy carbonitrides and borides. This work, integrated into the AFLOW computational ecosystem, provides an array of potential new candidates, ripe for experimental discoveries.

3.
Nat Commun ; 13(1): 5993, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36220810

RESUMO

Discovering multifunctional materials with tunable plasmonic properties, capable of surviving harsh environments is critical for advanced optical and telecommunication applications. We chose high-entropy transition-metal carbides because of their exceptional thermal, chemical stability, and mechanical properties. By integrating computational thermodynamic disorder modeling and time-dependent density functional theory characterization, we discovered a crossover energy in the infrared and visible range, corresponding to a metal-to-dielectric transition, exploitable for plasmonics. It was also found that the optical response of high-entropy carbides can be largely tuned from the near-IR to visible when changing the transition metal components and their concentration. By monitoring the electronic structures, we suggest rules for optimizing optical properties and designing tailored high-entropy ceramics. Experiments performed on the archetype carbide HfTa4C5 yielded plasmonic properties from room temperature to 1500K. Here we propose plasmonic transition-metal high-entropy carbides as a class of multifunctional materials. Their combination of plasmonic activity, high-hardness, and extraordinary thermal stability will result in yet unexplored applications.

4.
Angew Chem Int Ed Engl ; 61(32): e202205129, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35674197

RESUMO

A metallic, covalently bonded carbon allotrope is predicted via first principles calculations. It is composed of an sp3 carbon framework that acts as a diamond anvil cell by constraining the distance between parallel cis-polyacetylene chains. The distance between these sp2 carbon atoms renders the phase metallic, and yields two well-nested nearly parallel bands that cross the Fermi level. Calculations show this phase is a conventional superconductor, with the motions of the sp2 carbons being key contributors to the electron-phonon coupling. The sp3 carbon atoms impart superior mechanical properties, with a predicted Vickers hardness of 48 GPa. This phase, metastable at ambient conditions, could be made by on-surface polymerization of graphene nanoribbons, followed by pressurization of the resulting 2D sheets. A family of multifunctional materials with tunable superconducting and mechanical properties could be derived from this phase by varying the sp2 versus sp3 carbon content, and by doping.

5.
Nat Commun ; 12(1): 5747, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34593798

RESUMO

High-entropy ceramics are attracting significant interest due to their exceptional chemical stability and physical properties. While configurational entropy descriptors have been successfully implemented to predict their formation and even to discover new materials, the contribution of vibrations to their stability has been contentious. This work unravels the issue by computationally integrating disorder parameterization, phonon modeling, and thermodynamic characterization. Three recently synthesized carbides are used as a testbed: (HfNbTaTiV)C, (HfNbTaTiW)C, and (HfNbTaTiZr)C. It is found that vibrational contributions should not be neglected when precursors or decomposition products have different nearest-neighbor environments from the high-entropy carbide.

6.
Adv Mater ; 33(42): e2102904, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34476849

RESUMO

The entropy landscape of high-entropy carbides can be used to understand and predict their structure, properties, and stability. Using first principles calculations, the individual and temperature-dependent contributions of vibrational, electronic, and configurational entropies are analyzed, and compare them qualitatively to the enthalpies of mixing. As an experimental complement, high-entropy carbide thin films are synthesized with high power impulse magnetron sputtering to assess structure and properties. All compositions can be stabilized in the single-phase state despite finite positive, and in some cases substantial, enthalpies of mixing. Density functional theory calculations reveal that configurational entropy dominates the free energy landscape and compensates for the enthalpic penalty, whereas the vibrational and electronic entropies offer negligible contributions. The calculations predict that in many compositions, the single-phase state becomes stable at extremely high temperatures (>3000 K). Consequently, rapid quenching rates are needed to preserve solubility at room temperature and facilitate physical characterization. Physical vapor deposition provides this experimental validation opportunity. The computation/experimental data set generated in this work identifies "valence electron concentration" as an effective descriptor to predict structural and thermodynamic properties of multicomponent carbides and educate new formulation selections.

7.
Sci Data ; 8(1): 217, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34385453

RESUMO

The Open Databases Integration for Materials Design (OPTIMADE) consortium has designed a universal application programming interface (API) to make materials databases accessible and interoperable. We outline the first stable release of the specification, v1.0, which is already supported by many leading databases and several software packages. We illustrate the advantages of the OPTIMADE API through worked examples on each of the public materials databases that support the full API specification.

8.
Nat Commun ; 11(1): 5966, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33235197

RESUMO

Active learning-the field of machine learning (ML) dedicated to optimal experiment design-has played a part in science as far back as the 18th century when Laplace used it to guide his discovery of celestial mechanics. In this work, we focus a closed-loop, active learning-driven autonomous system on another major challenge, the discovery of advanced materials against the exceedingly complex synthesis-processes-structure-property landscape. We demonstrate an autonomous materials discovery methodology for functional inorganic compounds which allow scientists to fail smarter, learn faster, and spend less resources in their studies, while simultaneously improving trust in scientific results and machine learning tools. This robot science enables science-over-the-network, reducing the economic impact of scientists being physically separated from their labs. The real-time closed-loop, autonomous system for materials exploration and optimization (CAMEO) is implemented at the synchrotron beamline to accelerate the interconnected tasks of phase mapping and property optimization, with each cycle taking seconds to minutes. We also demonstrate an embodiment of human-machine interaction, where human-in-the-loop is called to play a contributing role within each cycle. This work has resulted in the discovery of a novel epitaxial nanocomposite phase-change memory material.

9.
Nat Commun ; 9(1): 4980, 2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30478375

RESUMO

High-entropy materials have attracted considerable interest due to the combination of useful properties and promising applications. Predicting their formation remains the major hindrance to the discovery of new systems. Here we propose a descriptor-entropy forming ability-for addressing synthesizability from first principles. The formalism, based on the energy distribution spectrum of randomized calculations, captures the accessibility of equally-sampled states near the ground state and quantifies configurational disorder capable of stabilizing high-entropy homogeneous phases. The methodology is applied to disordered refractory 5-metal carbides-promising candidates for high-hardness applications. The descriptor correctly predicts the ease with which compositions can be experimentally synthesized as rock-salt high-entropy homogeneous phases, validating the ansatz, and in some cases, going beyond intuition. Several of these materials exhibit hardness up to 50% higher than rule of mixtures estimations. The entropy descriptor method has the potential to accelerate the search for high-entropy systems by rationally combining first principles with experimental synthesis and characterization.

10.
J Chem Inf Model ; 58(12): 2477-2490, 2018 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-30188699

RESUMO

A priori prediction of phase stability of materials is a challenging practice, requiring knowledge of all energetically competing structures at formation conditions. Large materials repositories-housing properties of both experimental and hypothetical compounds-offer a path to prediction through the construction of informatics-based, ab initio phase diagrams. However, limited access to relevant data and software infrastructure has rendered thermodynamic characterizations largely peripheral, despite their continued success in dictating synthesizability. Herein, a new module is presented for autonomous thermodynamic stability analysis, implemented within the open-source, ab initio framework AFLOW. Powered by the AFLUX Search-API, AFLOW-CHULL leverages data of more than 1.8 million compounds characterized in the AFLOW.org repository, and can be employed locally from any UNIX-like computer. The module integrates a range of functionality: the identification of stable phases and equivalent structures, phase coexistence, measures for robust stability, and determination of decomposition reactions. As a proof of concept, thermodynamic characterizations have been performed for more than 1300 binary and ternary systems, enabling the identification of several candidate phases for synthesis based on their relative stability criterion-including 17 promising C15 b-type structures and 2 half-Heuslers. In addition to a full report included herein, an interactive, online web application has been developed showcasing the results of the analysis and is located at aflow.org/aflow-chull .


Assuntos
Informática , Software , Termodinâmica , Simulação por Computador , Descoberta de Drogas , Ciência dos Materiais , Modelos Químicos
11.
Acta Crystallogr A Found Adv ; 74(Pt 3): 184-203, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29724965

RESUMO

Determination of the symmetry profile of structures is a persistent challenge in materials science. Results often vary amongst standard packages, hindering autonomous materials development by requiring continuous user attention and educated guesses. This article presents a robust procedure for evaluating the complete suite of symmetry properties, featuring various representations for the point, factor and space groups, site symmetries and Wyckoff positions. The protocol determines a system-specific mapping tolerance that yields symmetry operations entirely commensurate with fundamental crystallographic principles. The self-consistent tolerance characterizes the effective spatial resolution of the reported atomic positions. The approach is compared with the most used programs and is successfully validated against the space-group information provided for over 54 000 entries in the Inorganic Crystal Structure Database (ICSD). Subsequently, a complete symmetry analysis is applied to all 1.7+ million entries of the AFLOW data repository. The AFLOW-SYM package has been implemented in, and made available for, public use through the automated ab initio framework AFLOW.

12.
Inorg Chem ; 57(2): 653-667, 2018 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-29272112

RESUMO

The fundamental principles underlying the arrangement of elements into solid compounds with an enormous variety of crystal structures are still largely unknown. This study presents a general overview of the structure types appearing in an important subset of the solid compounds, i.e., binary and ternary compounds of the 6A column oxides, sulfides and selenides. It contains an analysis of these compounds, including the prevalence of various structure types, their symmetry properties, compositions, stoichiometries and unit cell sizes. It is found that these compound families include preferred stoichiometries and structure types that may reflect both their specific chemistry and research bias in the available empirical data. Identification of nonoverlapping gaps and missing stoichiometries in these structure populations may be used as guidance in the search for new materials.

13.
Nat Commun ; 8: 15679, 2017 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-28580961

RESUMO

Although historically materials discovery has been driven by a laborious trial-and-error process, knowledge-driven materials design can now be enabled by the rational combination of Machine Learning methods and materials databases. Here, data from the AFLOW repository for ab initio calculations is combined with Quantitative Materials Structure-Property Relationship models to predict important properties: metal/insulator classification, band gap energy, bulk/shear moduli, Debye temperature and heat capacities. The prediction's accuracy compares well with the quality of the training data for virtually any stoichiometric inorganic crystalline material, reciprocating the available thermomechanical experimental data. The universality of the approach is attributed to the construction of the descriptors: Property-Labelled Materials Fragments. The representations require only minimal structural input allowing straightforward implementations of simple heuristic design rules.

14.
Sci Adv ; 3(4): e1602241, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28439545

RESUMO

Magnetic materials underpin modern technologies, ranging from data storage to energy conversion to contactless sensing. However, the development of a new high-performance magnet is a long and often unpredictable process, and only about two dozen magnets are featured in mainstream applications. We describe a systematic pathway to the design of novel magnetic materials, which demonstrates a high throughput and discovery speed. On the basis of an extensive electronic structure library of Heusler alloys containing 236,115 prototypical compounds, we filtered those displaying magnetic order and established whether they can be fabricated at thermodynamic equilibrium. Specifically, we carried out a full stability analysis of intermetallic Heusler alloys made only of transition metals. Among the possible 36,540 prototypes, 248 were thermodynamically stable but only 20 were magnetic. The magnetic ordering temperature, TC, was estimated by a regression calibrated on the experimental TC of about 60 known compounds. As a final validation, we attempted the synthesis of a few of the predicted compounds and produced two new magnets: Co2MnTi, which displays a remarkably high TC in perfect agreement with the predictions, and Mn2PtPd, which is an antiferromagnet. Our work paves the way for large-scale design of novel magnetic materials at potentially high speed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...