Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Eur J Appl Physiol ; 124(2): 417-431, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37535141

RESUMO

PURPOSE: This manuscript is devoted to discuss the interplay between velocity and acceleration in setting metabolic and mechanical power in team sports. METHODS: To this aim, an essential step is to assess the individual Acceleration-Speed Profile (ASP) by appropriately analysing training sessions or matches. This allows one to estimate maximal mechanical and metabolic power, including that for running at constant speed, and hence to determine individual thresholds thereof. RESULTS: Several approaches are described and the results, as obtained from 38 official matches of one team (Italian Serie B, season 2020-2021), are reported and discussed. The number of events in which the external mechanical power exceeded 80% of that estimated from the subject's ASP ([Formula: see text]) was 1.61 times larger than the number of accelerations above 2.5 m s-2 ([Formula: see text]). The difference was largest for midfielders and smallest for attackers (2.30 and 1.36 times, respectively) due to (i) a higher starting velocity for midfielders and (ii) a higher external peak power for attackers in performing [Formula: see text]. From the energetic perspective, the duration and the corresponding metabolic power of high-demanding phases ([Formula: see text]) were essentially constant (6 s and 22 W  kg-1, respectively) from the beginning to the end of the match, even if their number decreased from 28 in the first to 21 in the last 15-min period, as a consequence of the increased recovery time between [Formula: see text] from 26 s in the first to 37 s in the last 15-min period. CONCLUSION: These data underline the flaws of acceleration counting above fixed thresholds.


Assuntos
Desempenho Atlético , Futebol Americano , Corrida , Humanos , Esportes de Equipe , Metabolismo Energético , Aceleração
3.
Eur J Appl Physiol ; 123(11): 2473-2481, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37300700

RESUMO

PURPOSE: Acceleration phases require additional mechanical and metabolic power, over and above that for running at constant velocity. The present study is devoted to a paradigmatic example: the 100-m dash, in which case the forward acceleration is very high initially and decreases progressively to become negligible during the central and final phases. METHODS: The mechanical ([Formula: see text]) and metabolic ([Formula: see text]) power were analysed for both Bolt's extant world record and for medium level sprinters. RESULTS: In the case of Bolt, [Formula: see text] and [Formula: see text] attain peaks of ≈ 35 and ≈ 140 W kg-1 after ≈ 1 s, when the velocity is ≈ 5.5 m s-1; they decrease substantially thereafter, to attain constant values equal to those required for running at constant speed (≈ 18 and ≈ 65 W kg-1) after ≈ 6 s, when the velocity has reached its maximum (≈ 12 m s-1) and the acceleration is nil. At variance with [Formula: see text], the power required to move the limbs in respect to the centre of mass (internal power, [Formula: see text]) increases gradually to reach, after ≈ 6 s a constant value of ≈ 33 W kg-1. As a consequence, [Formula: see text] ([Formula: see text]) increases throughout the run to a constant value of ≈ 50 W kg-1. In the case of the medium level sprinters, the general patterns of speed, mechanical and metabolic power, neglecting the corresponding absolute values, follow an essentially equal trend. CONCLUSION: Hence, whereas in the last part of the run the velocity is about twice that observed after ≈ 1 s, [Formula: see text] and [Formula: see text] are reduced to 45-50% of the peak values.


Assuntos
Corrida , Humanos , Metabolismo Energético , Aceleração
4.
Eur J Appl Physiol ; 121(10): 2837-2848, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34173861

RESUMO

PURPOSE: Theoretical 100-m performance times (t100-m) of a top athlete at Mexico-City (2250 m a.s.l.), Alto-Irpavi (Bolivia) (3340 m a.s.l.) and in a science-fiction scenario "in vacuo" were estimated assuming that at the onset of the run: (i) the velocity (v) increases exponentially with time; hence (ii) the forward acceleration (af) decreases linearly with v, iii) its time constant (τ) being the ratio between vmax (for af = 0) and af max (for v = 0). METHODS: The overall forward force per unit of mass (Ftot), sum of af and of the air resistance (Fa = k v2, where k = 0.0037 J·s2·kg-1·m-3), was estimated from the relationship between af and v during Usain Bolt's extant world record. Assuming that Ftot is unchanged since the decrease of k at altitude is known, the relationships between af and v were obtained subtracting the appropriate Fa values from Ftot, thus allowing us to estimate in the three conditions considered vmax, τ, and t100-m. These were also obtained from the relationship between mechanical power and speed, assuming an unchanged mechanical power at the end of the run (when af ≈ 0), regardless of altitude. RESULTS: The resulting t100-m amounted to 9.515, 9.474, and 9.114 s, and to 9.474, 9.410, and 8.981 s, respectively, as compared to 9.612 s at sea level. CONCLUSIONS: Neglecting science-fiction scenarios, t100-m of a world-class athlete can be expected to undergo a reduction of 1.01 to 1.44% at Mexico-City and of 1.44 to 2.10%, at Alto-Irpavi.


Assuntos
Altitude , Desempenho Atlético/fisiologia , Metabolismo Energético/fisiologia , Corrida/fisiologia , Aceleração , Atletas , Gravitação , Humanos
5.
J Biomech ; 123: 110524, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34023754

RESUMO

Assessing football players' sprint mechanical outputs is key to the performance management process (e.g. talent identification, training, monitoring, return-to-sport). This is possible using linear sprint testing to derive force-velocity-power outputs (in laboratory or field settings), but testing requires specific efforts and the movement assessed is not specific to the football playing tasks. This proof-of-concept short communication presents a method to derive the players' individual acceleration-speed (AS) profile in-situ, i.e. from global positioning system data collected over several football sessions (without running specific tests). Briefly, raw speed data collected in 16 professional male football players over several training sessions were plotted, and for each 0.2 m/s increment in speed from 3 m/s up to the individual top-speed reached, maximal acceleration output was retained to generate a linear AS profile. Results showed highly linear AS profiles for all players (all R2 > 0.984) which allowed to extrapolate the theoretical maximal speed and accelerations as the individual's sprint maximal capacities. Good reliability was observed between AS profiles determined 2 weeks apart for the players tested, and further research should focus on deepening our understanding of these methodological features. Despite the need for further explorations (e.g. comparison with conceptually close force-velocity assessments that require, isolated and not football-specific linear sprint tests), this in-situ approach is promising and allows direct assessment of football players within their specific acceleration-speed tasks. This opens several perspectives in the performance and injury prevention fields, in football and likely other sprint-based team sports, and the possibility to "test players without testing them".


Assuntos
Desempenho Atlético , Futebol , Humanos , Masculino , Aceleração , Reprodutibilidade dos Testes
6.
Int J Sports Med ; 39(8): 581-587, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29902808

RESUMO

Team sports are characterised by frequent episodes of accelerated/decelerated running. The corresponding energy cost can be estimated on the basis of the biomechanical equivalence between accelerated/decelerated running on flat terrain and constant speed running uphill/downhill. This approach allows one to: (i) estimate the time course of the instantaneous metabolic power requirement of any given player and (ii) infer therefrom the overall energy expenditure of any given time window of a soccer drill or match. In the original approach, walking and running were aggregated and energetically considered as running, even if in team sports several walking periods are interspersed among running bouts. However, since the transition speed between walking and running is known for any given incline of the terrain, we describe here an approach to identify walking episodes, thus utilising the corresponding energy cost which is smaller than in running. In addition, the new algorithm also takes into account the energy expenditure against the air resistance, for both walking and running. The new approach yields overall energy expenditure values, for a whole match,≈14% smaller than the original algorithm; moreover, it shows that the energy expenditure against the air resistance is≈2% of the total.


Assuntos
Acelerometria/métodos , Desempenho Atlético/fisiologia , Metabolismo Energético , Corrida/fisiologia , Caminhada/fisiologia , Algoritmos , Sistemas de Informação Geográfica , Humanos , Consumo de Oxigênio
7.
Int J Sports Med ; 39(8): 588-595, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29902809

RESUMO

A previous approach to estimate the time course of instantaneous metabolic power and O2 consumption in team sports has been updated to assess also energy expenditure against air resistance and to identify walking and running separately. Whole match energy expenditure turned out ≈14% smaller than previously obtained, the fraction against the air resistance amounting to ≈2% of the total. Estimated net O2 consumption and overall energy expenditure are fairly close to those measured by means of a portable metabolic cart; the average difference, after a 45 min exercise period of variable intensity and mode, amounting to ≈10%. Aerobic and anaerobic energy yields, metabolic power, energy expenditure and duration of High (HI) and Low (LI) intensity bouts can also be estimated. Indeed, data on 497 soccer players during the 2014/2015 Italian "Serie A" show that the number of HI efforts decreased from the first to the last 15-min periods of the match, without substantial changes in mean metabolic power (≈22 W·kg-1) and duration (≈6.5 s). On the contrary, mean metabolic power of the LI decreased (5.8 to 4.8 W·kg-1), mainly because of a longer duration thereof, thus underscoring the need for longer recovery periods between HI.


Assuntos
Acelerometria/métodos , Desempenho Atlético/fisiologia , Metabolismo Energético , Corrida/fisiologia , Caminhada/fisiologia , Algoritmos , Limiar Anaeróbio/fisiologia , Sistemas de Informação Geográfica , Humanos , Consumo de Oxigênio
8.
Med Sci Sports Exerc ; 50(7): 1487-1494, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29432324

RESUMO

PURPOSE: This study aimed to assess the efficacy of critical metabolic power derived from variable-speed movement for classifying intensity in team sport activity. METHODS: Elite male hockey players (n = 12) completed a series of time trials (100 yards, 400 yards, 1500 yards) and a 3-min all-out test to derive both critical speed (CS) and critical power (CP). Heart rate (HR), blood lactate, and rating of perceived exertion were measured during each protocol. Participants (n = 10) then played two competitive hockey matches. Time spent greater than 85% of maximum HR was compared with time spent above CS (from the time trials) and CP (from the 3-min test). RESULTS: Between protocols, there was a moderate and nonsignificant association for CS (r = 0.359, P = 0.252) and a very large association for CP (r = 0.754, P = 0.005); the association was very large for peak HR (r = 0.866, P < 0.001), large for blood lactate (r = 0.506, P = 0.093), and moderate for rating of perceived exertion (rho = 0.441, P = 0.152). Time trials produced higher CS (4.3 vs 2.0 m·s, P < 0.001) and CP (18.3 vs 10.5 W·kg, P < 0.001) values than did the 3-min test. In matches, there was a very large association between time spent above 85% of maximum HR and time spent above both CS (r = 0.719, P < 0.001) and CP (r = 0.867, P < 0.001). This relationship was stronger for CP compared with CS (Z = 3.29, P = 0.0007). CONCLUSIONS: Speed is not an appropriate parameter for the classification of team sport activity comprising continual changes in speed and direction; however, critical metabolic power derived from variable-speed activity seems useful for this purpose.


Assuntos
Desempenho Atlético/fisiologia , Hóquei/fisiologia , Esforço Físico , Adulto , Teste de Esforço , Frequência Cardíaca , Humanos , Ácido Láctico/sangue , Masculino , Movimento , Adulto Jovem
9.
Eur J Appl Physiol ; 115(3): 451-69, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25549786

RESUMO

PURPOSE: To estimate the energetics and biomechanics of accelerated/decelerated running on flat terrain based on its biomechanical similarity to constant speed running up/down an 'equivalent slope' dictated by the forward acceleration (a f). METHODS: Time course of a f allows one to estimate: (1) energy cost of sprint running (C sr), from the known energy cost of uphill/downhill running, and (2) instantaneous (specific) mechanical accelerating power (P sp = a f × speed). RESULTS: In medium-level sprinters (MLS), C sr and metabolic power requirement (P met = C sr × speed) at the onset of a 100-m dash attain ≈50 J kg(-1) m(-1), as compared to ≈4 for running at constant speed, and ≈90 W kg(-1). For Bolt's current 100-m world record (9.58 s) the corresponding values attain ≈105 J kg(-1) m(-1) and ≈200 W kg(-1). This approach, as applied by Osgnach et al. (Med Sci Sports Exerc 42:170-178, 2010) to data obtained by video-analysis during soccer games, has been implemented in portable GPS devices (GPEXE), thus yielding P met throughout the match. Actual O2 consumed, estimated from P met assuming a monoexponential VO2 response (Patent Pending, TV2014A000074), was close to that determined by portable metabolic carts. Peak P sp (W kg(-1)) was 17.5 and 19.6 for MLS and elite soccer players, and 30 for Bolt. The ratio of horizontal to overall ground reaction force (per kg body mass) was ≈20 % larger, and its angle of application in respect to the horizontal ≈10° smaller, for Bolt, as compared to MLS. Finally, we estimated that, on a 10 % down-sloping track Bolt could cover 100 m in 8.2 s. CONCLUSIONS: The above approach can yield useful information on the bioenergetics and biomechanics of accelerated/decelerated running.


Assuntos
Desempenho Atlético , Metabolismo Energético , Corrida/fisiologia , Humanos
10.
Med Sci Sports Exerc ; 42(1): 170-8, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20010116

RESUMO

PURPOSE: Video match analysis is used for the assessment of physical performances of professional soccer players, particularly for the identification of "high intensities" considered as "high running speeds." However, accelerations are also essential elements setting metabolic loads, even when speed is low. We propose a more detailed assessment of soccer players' metabolic demands by video match analysis with the aim of also taking into account accelerations. METHODS: A recent study showed that accelerated running on a flat terrain is equivalent to running uphill at constant speed, the incline being dictated by the acceleration. Because the energy cost of running uphill is known, this makes it possible to estimate the instantaneous energy cost of accelerated running, the corresponding instantaneous metabolic power, and the overall energy expenditure, provided that the speed (and acceleration) is known. Furthermore, the introduction of individual parameters makes it possible to customize performance profiles, especially as it concerns energy expenditure derived from anaerobic sources. Data from 399 "Serie-A" players (mean +/- SD; age = 27 +/- 4 yr, mass = 75.8 +/- 5.0 kg, stature = 1.80 +/- 0.06 m) were collected during the 2007-2008 season. RESULTS: Mean match distance was 10,950 +/- 1044 m, and average energy expenditure was 61.12 +/- 6.57 kJ x kg(-1). Total distance covered at high power (>20 W x kg(-1)) amounted to 26% and corresponding energy expenditure to approximately 42% of the total. "High intensities" expressed as high-power output are two to three times larger than those based only on running speed. CONCLUSIONS: The present approach for the assessment of top-level soccer players match performance through video analysis allowed us to assess instantaneous metabolic power, thus redefining the concept of "high intensity" on the basis of actual metabolic power rather than on speed alone.


Assuntos
Metabolismo Energético/fisiologia , Futebol/fisiologia , Aceleração , Adulto , Desempenho Atlético , Humanos , Itália , Masculino , Corrida/fisiologia , Gravação em Vídeo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...