Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39229703

RESUMO

Extracellular vesicles (EVs) have excellent biocompatibility and long retention times in the circulation and have consequently been expected to be useful as drug-delivery systems. However, their applications have been limited because of the inability to introduce hydrophobic compounds to EVs without the use of harmful organic solvents. Herein, we developed an organic-solvent-free drug-loading technique based on the host exchange reaction. We demonstrated that the exchange reaction enabled quantitative loading of EVs with highly concentrated (0.1 mM) hydrophobic fullerene derivatives. Fullerene derivative-loaded EVs (EVs/C60) could eliminate cancer cell lines more efficiently than fullerene derivative-loaded liposomes (Lip/C60). Moreover, the photodynamic activity of EVs/C60 was fivefold higher than that of the clinically available photosensitizer photofrin. EVs/C60 could efficiently suppress tumor growth in tumor-xenograft model mice.

2.
ACS Appl Mater Interfaces ; 16(36): 47137-47149, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39106079

RESUMO

With their low immunogenicity and excellent deliverability, extracellular vesicles (EVs) are promising platforms for drug delivery systems. In this study, hydrophobic molecule loading techniques were developed via an exchange reaction based on supramolecular chemistry without using organic solvents that can induce EV disruption and harmful side effects. To demonstrate the availability of an exchanging reaction to prepare drug-loading EVs, hydrophobic boron cluster carborane (CB) was introduced to EVs (CB@EVs), which is expected as a boron agent for boron neutron capture therapy (BNCT). The exchange reaction enabled the encapsulation of CB to EVs without disrupting their structure and forming aggregates. Single-particle analysis revealed that an exchanging reaction can uniformly introduce cargo molecules to EVs, which is advantageous in formulating pharmaceuticals. The performance of CB@EVs as boron agents for BNCT was demonstrated in vitro and in vivo. Compared to L-BPA, a clinically available boron agent, and CB delivered with liposomes, CB@EV systems exhibited the highest BNCT activity in vitro due to their excellent deliverability of cargo molecules via an endocytosis-independent pathway. The system can deeply penetrate 3D cultured spheroids even in the presence of extracellular matrices. The EV-based system could efficiently accumulate in tumor tissues in tumor xenograft model mice with high selectivity, mainly via the enhanced permeation and retention effect, and the deliverability of cargo molecules to tumor tissues in vivo enhanced the therapeutic benefits of BNCT compared to the L-BPA/fructose complex. All of the features of EVs are also advantageous in establishing anticancer agent delivery platforms.


Assuntos
Terapia por Captura de Nêutron de Boro , Vesículas Extracelulares , Terapia por Captura de Nêutron de Boro/métodos , Animais , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Camundongos , Humanos , Boranos/química , Boro/química , Compostos de Boro/química , Compostos de Boro/farmacologia , Linhagem Celular Tumoral , Portadores de Fármacos/química , Camundongos Nus , Camundongos Endogâmicos BALB C
3.
ChemMedChem ; : e202400268, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38924356

RESUMO

Studies have shown that folate receptors are highly expressed in various cancer cells. Here, we synthesized folic acid-conjugated pullulan (FAPL) as a solubilizing agent to improve the photodynamic activity of porphyrin derivative-polysaccharide complexes. The porphyrin derivative-FAPL complex exhibited long-term stability in an aqueous solution, attributed to the folic acid modification. Furthermore, in vitro and in vivo experiments highlighted the enhanced photodynamic activity of the porphyrin derivative-FAPL complex toward 4T1 breast-cancer cells, compared with the activities of the porphyrin derivative-pullulan complex and Photofrin. This enhanced activity is attributed to the improvement of intracellular uptake by the folate receptor.

4.
Chemistry ; 29(72): e202302486, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-37792507

RESUMO

Boron neutron capture therapy (BNCT) is a promising modality for cancer treatment because of its minimal invasiveness. To maximize the therapeutic benefits of BNCT, the development of efficient platforms for the delivery of boron agents is indispensable. Here, carborane-integrated immunoliposomes were prepared via an exchanging reaction to achieve HER-2-targeted BNCT. The conjugation of an anti-HER-2 antibody to carborane-integrated liposomes successfully endowed these liposomes with targeting properties toward HER-2-overexpressing human ovarian cancer cells (SK-OV3); the resulting BNCT activity toward SK-OV3 cells obtained using the current immunoliposomal system was 14-fold that of the l-BPA/fructose complex, which is a clinically available boron agent. Moreover, the growth of spheroids treated with this system followed by thermal neutron irradiation was significantly suppressed compared with treatment with the l-BPA/fructose complex.


Assuntos
Boranos , Terapia por Captura de Nêutron de Boro , Humanos , Lipossomos , Terapia por Captura de Nêutron de Boro/métodos , Boro , Compostos de Boro , Frutose
5.
Chembiochem ; 24(15): e202300186, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37069129

RESUMO

Minimally invasive boron neutron capture therapy (BNCT) is an elegant approach for cancer treatment. The highly selective and efficient deliverability of boron agents to cancer cells is the key to maximizing the therapeutic benefits of BNCT. In addition, enhancement of the frequencies to achieve boron neutron capture reaction is also significant in improving therapeutic efficacy by providing a highly concentrated boron agent in each boron nanoparticle. As the density of the thermal neutron beam remains low, it is unable to induce high-efficiency cell destruction. Herein, we report phospholipid-coated boronic oxide nanoparticles as agents for BNCT that can provide a highly concentrated boron atom in each nanoparticle. The current system exhibited in vitro BNCT activity seven times higher than that of commercial boron agents. Furthermore, the system could penetrate cancer spheroids deeply, efficiently suppressing thermal neutron irradiation-induced growth.


Assuntos
Terapia por Captura de Nêutron de Boro , Nanopartículas , Boro , Fosfolipídeos , Compostos de Boro/uso terapêutico , Óxidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA