Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Opt Express ; 28(19): 28366-28382, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32988109

RESUMO

Volume holographic phase gratings possessing the saturated refractive index modulation amplitudes as large as 4.5×10-2 were recorded at a wavelength of 532 nm in a photopolymerizable nanoparticle-polymer composite (NPC) film dispersed with ultrahigh refractive index hyperbranched-polymer (HBP) organic nanoparticles. This prominent result was achieved by a combination of the HBP nanoparticles with triazine and aromatic ring units and an electron donor/acceptor photo-initiator system doped in an acrylate monomer blend with low viscosity. As a result, efficient mutual diffusion of HBP nanoparticles and monomer having their very large refractive index difference took place. Obtained results suggest a potentiality of our newly developed HBP-dispersed NPC gratings as efficient volume holographic optical elements for various photonic applications including wearable headsets for augmented and mixed reality.

3.
Sci Rep ; 10(1): 14528, 2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32883974

RESUMO

Organic light-emitting diodes (OLEDs) using a liquid organic semiconductor (LOS) are expected to provide extremely flexible displays. Recently, microfluidic OLEDs were developed to integrate and control a LOS in a device combined with microfluidic technology. However, LOS-based OLEDs show poor-colour-purity light emissions owing to their wide full width at half maximum (FWHM). Here we report liquid/solution-based microfluidic quantum dots light-emitting diodes (QLEDs) for high-colour-purity light emission. Microfluidic QLEDs contain liquid materials of LOS for a backlight and QDs solutions as luminophores. The microfluidic QLED exhibits red, green, and blue light emissions and achieves the highest light colour purity ever reported among LOS-based devices for green and red lights with narrow FWHMs of 26.2 nm and 25.0 nm, respectively. Additionally, the effect of the channel depth for the luminophore on the peak wavelength and FWHM is revealed. The developed device extends the capabilities of flexible microfluidic OLEDs-based and QDs-based displays.

4.
Nat Commun ; 11(1): 4224, 2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32839454

RESUMO

To reduce the ever-increasing energy consumption in datacenters, one of the effective approaches is to increase the ambient temperature, thus lowering the energy consumed in the cooling systems. However, this entails more stringent requirements for the reliability and durability of the optoelectronic components. Herein, we fabricate and demonstrate silicon-polymer hybrid modulators which support ultra-fast single-lane data rates up to 200 gigabits per second, and meanwhile feature excellent reliability with an exceptional signal fidelity retained at extremely-high ambient temperatures up to 110 °C and even after long-term exposure to high temperatures. This is achieved by taking advantage of the high electro-optic (EO) activities (in-device n3r33 = 1021 pm V-1), low dielectric constant, low propagation loss (α, 0.22 dB mm-1), and ultra-high glass transition temperature (Tg, 172 °C) of the developed side-chain EO polymers. The presented modulator simultaneously fulfils the requirements of bandwidth, EO efficiency, and thermal stability for EO modulators. It could provide ultra-fast and reliable interconnects for energy-hungry and harsh-environment applications such as datacentres, 5G/B5G, autonomous driving, and aviation systems, effectively addressing the energy consumption issue for the next-generation optical communication.

5.
J Phys Chem B ; 123(50): 10825-10836, 2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31804083

RESUMO

We describe the kinetics of excimer electrogenerated chemiluminescence (ECL) of a liquid pyrene derivative, 1-pyrenebutyricacid 2-ethylhexylester (PLQ) dissolved in a molecular solvent, acetonitrile (MeCN), and an ionic liquid, triethylpentylphosphonium bis(trifluoromethanesulfonyl)imide ([P2225][TFSI]). Pyrene was also used for comparison. To discuss the kinetics of the excimer ECLs, the photophysical and electrochemical properties and electronic states of PLQ and pyrene were revealed. The photoluminescence (PL) spectra, rate constants for the radiative transitions, and redox potentials of PLQ and pyrene dissolved in MeCN and [P2225][TFSI] suggest that as a solvent, [P2225][TFSI] behaves more polar than MeCN. By analyzing the PL decay curves, the rate constants to form the excimer were determined to be on the order of 109 and 107 M-1 s-1 in MeCN and [P2225][TFSI], respectively, which were limited by the diffusion. For neat PLQ (1.6 M), a delay of 0.3-0.4 ns for the excimer emission compared to the monomer emission was observed. It is likely that the delay corresponds to the timescale for arranging the conformation to form the excimer. The ECL of PLQ was generated by applying a square wave voltage to produce the radical anion and cation, and on the ECL spectra, the excimer emission was more prevailed compared to the PL spectra. Kinetic analysis for the electron transfer reaction between the radical ions based on Marcus theory indicates that the electron transfer is limited by the diffusion of the radical ions. Moreover, the electron transfer distance (det) between the radical cation and anion to generate excited states was calculated with a framework of the theory. Kinetically, the electron transfer can take place at det < ∼11 Å in MeCN and det < ∼12 Å in [P2225][TFSI]. The density functional theory (DFT) and time-dependent DFT calculations show that the potential energy curve of the excimer against the distance between the pyrene rings reaches a minimum at 3.50 Å. This suggests that through the electron transfer, the process of the direct formation of the monomer S1 state followed by the excimer formation is more prevailed than that of the direct excimer formation.

6.
Sci Rep ; 5: 14822, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26439164

RESUMO

We demonstrated a novel microfluidic white organic light-emitting diode (microfluidic WOLED) based on integrated sub-100-µm-wide microchannels. Single-µm-thick SU-8-based microchannels, which were sandwiched between indium tin oxide (ITO) anode and cathode pairs, were fabricated by photolithography and heterogeneous bonding technologies. 1-Pyrenebutyric acid 2-ethylhexyl ester (PLQ) was used as a solvent-free greenish-blue liquid emitter, while 2,8-di-tert-butyl-5,11-bis(4-tert-butylphenyl)-6,12-diphenyltetracene (TBRb)-doped PLQ was applied as a yellow liquid emitter. In order to form the liquid white light-emitting layer, the greenish-blue and yellow liquid emitters were alternately injected into the integrated microchannels. The fabricated electro-microfluidic device successfully exhibited white electroluminescence (EL) emission via simultaneous greenish-blue and yellow emissions under an applied voltage of 100 V. A white emission with Commission Internationale de l'Declairage (CIE) color coordinates of (0.40, 0.42) was also obtained; the emission corresponds to warm-white light. The proposed device has potential applications in subpixels of liquid-based microdisplays and for lighting.

7.
Opt Express ; 20(12): 13457-69, 2012 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-22714373

RESUMO

We report on observation of high-order optical nonlinearities in our recently developed photopolymerizable semiconductor CdSe quantum dot (QD)-polymer nanocomposite films at various volume fractions of CdSe QDs as high as 0.91 vol.% (3.6 wt.%). We performed Z-scan and degenerate multi-wave mixing (DMWM) measurements using a 532-nm picosecond laser delivering single 35 ps pulses at a repetition rate of 10 Hz. Using the uniformly cured polymer nanocomposite films, we observed the third- and fifth-order nonlinear optical effects in closed-aperture Z-scan measurements by which it was found that saturable nonlinear absorption (light-induced transparency) and large negative nonlinear refraction were induced. We also measured dependences of the effective third- and fifth-order nonlinear refraction constants on CdSe QD volume fraction. Based on the Maxwell-Garnett model, we estimated the third- and fifth-order nonlinear optical susceptibilities of CdSe QD and discussed a contribution of the third-order effect to the fifth-order one due to the cascaded (local-field) effect. Coexistence of the third- and fifth-order nonlinear refraction was also confirmed by DMWM.

8.
J Phys Chem A ; 110(14): 4629-37, 2006 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-16599429

RESUMO

Effects of solvent water on the photophysical properties of a series of meta- and para-substituted anilines have been investigated by means of time-resolved fluorescence, transient absorption, and photoacoustic measurements. Some aniline derivatives exhibit extremely short fluorescence lifetime (tau(f)) and small quantum yield (Phi(f)) in water (e.g., tau(f) = 45 ps and Phi(f) = 0.0019 for m-cyanoaniline (m-ANCN) in H(2)O), which is in marked contrast with their much larger values in nonaqueous solvents (tau(f) = 7.3 ns and Phi(f) = 0.14 for m-ANCN in acetonitrile). Photoacoustic and transient absorption measurements show that the remarkable fluorescence quenching of m-ANCN in water is attributed almost exclusively to fast internal conversion. The lifetime measurements of m-ANCN in H(2)O/acetonitrile binary solvent mixtures reveal that the quenching is related to variation of hydrogen-bonding interactions between the amino group and water molecules and the conformational change of the amino group upon electronic excitation. Similar fluorescence quenching due to solvent water is also found for N-alkylated m-ANCNs. The drastic differences in the fluorescence intensity and lifetime of m-ANCNs under hydrophobic and hydrophilic environments and also the large solvent polarity dependence of the fluorescence band position suggest the possibility that they can be utilized as fluorescent probes for investigating the microenvironment of biological systems. In suspensions of human serum albumin (HSA) in water, remarkable enhancement of the fluorescence intensity and lifetime is observed for m-ANCN and its N-alkylated derivatives, demonstrating that m-ANCNs can be a candidate for novel fluorescent probe with small molecular size.

9.
J Org Chem ; 70(24): 9693-701, 2005 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-16292796

RESUMO

[structures: see text] Novel macrocyclic and medium-size stilbenophanes tethered by silyl chains were synthesized, and their photochemical and photophysical properties were examined. Direct photoirradiation of macrocyclic stilbenophanes gave intramolecular photocycloadducts stereoselectively, and the efficiency increased with decreasing distance between the two stilbene units. The triplet-sensitized photoreaction of stilbenophanes caused cis-trans photoisomerization. Photoreactions of cis-fixed stilbenophanes under an oxygen atmosphere selectively gave phenanthrenophanes. Fluorescence quantum yields increased with the introduction of silyl substituents, and hence those of silyl-tethered stilbenophanes were larger than that of unsubstituted trans-stilbene. Intramolecular excimer emission was observed when the distances between two stilbene units in the stilbenophanes were sufficiently small.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...