Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Genom ; 7(11)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34818145

RESUMO

We report here the complete genome sequence of the widely studied Actinobacillus pleuropneumoniae serovar 8 reference strain 405, generated using the Pacific Biosciences (PacBio) RS II platform. Furthermore, we compared draft sequences generated by Illumina sequencing of six stocks of this strain, including the same original stock used to generate the PacBio sequence, held in different countries and found little genetic variation, with only three SNPs identified, all within the degS gene. However, sequences of two small plasmids, pARD3079 and p405tetH, detected by Illumina sequencing of the draft genomes were not identified in the PacBio sequence of the reference strain.


Assuntos
Infecções por Actinobacillus , Actinobacillus pleuropneumoniae , Doenças dos Suínos , Actinobacillus pleuropneumoniae/classificação , Actinobacillus pleuropneumoniae/genética , Animais , Variação Genética , Genoma Bacteriano , Sequenciamento de Nucleotídeos em Larga Escala , Sorogrupo , Suínos
2.
Appl Environ Microbiol ; 84(8)2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29427423

RESUMO

Streptococcus suis, a global zoonosis of pigs, shows regional differences in the prevalence of human-associated disease for Asian and non-Asian countries. The isolation rates and diversities of S. suis on tonsils of healthy slaughter pigs in China and the United Kingdom were studied for effects of geography, temperature, pig age, and farm type. Isolates underwent analysis of molecular serotype and multilocus sequence type and virulence-associated genotyping. Although we found no significant difference in positive isolation rates between Chinese and UK farms, the prevalences of serotypes previously associated with human disease were significantly greater in the Chinese collection (P = 0.003). A significant effect of temperature was found on the positive isolation rate of the Chinese samples and the prevalence of human disease-associated serotypes in the UK S. suis population (China, P = 0.004; United Kingdom, P = 0.024) and on the prevalence of isolates carrying key virulence genes in China (P = 0.044). Finally, we found marked diversity among S. suis isolates, with statistically significant temperature effects on detection of multiple strain types within individual pigs. This study highlighted the high carriage prevalence and diversity of S. suis among clinically healthy pig herds of China and the United Kingdom. The significant effect of temperature on prevalence of isolation, human disease-associated serotypes, and diversity carried by individual pigs may shed new light on geographic variations in human S. suis-associated disease.IMPORTANCEStreptococcus suis is a global zoonotic pathogen and also a normal colonizer mainly carried on the tonsil of pigs. Thus, it is important to study the effect of environmental and management-associated factors on the S. suis populations in clinically healthy pigs. In this research, we investigated the similarities and differences between the S. suis populations obtained from different pig ages, seasons, and farm management systems and discovered the relationship between high climatic temperature and the prevalence of S. suis.


Assuntos
Criação de Animais Domésticos/métodos , Variação Genética , Infecções Estreptocócicas/veterinária , Streptococcus suis/fisiologia , Doenças dos Suínos/epidemiologia , Fatores Etários , Animais , China/epidemiologia , Genoma Bacteriano , Estudos Longitudinais , Prevalência , Infecções Estreptocócicas/epidemiologia , Infecções Estreptocócicas/microbiologia , Streptococcus suis/genética , Suínos , Doenças dos Suínos/microbiologia , Temperatura , Reino Unido/epidemiologia
3.
PLoS One ; 12(8): e0181365, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28796780

RESUMO

Salmonella enterica are a threat to public health. Current vaccines are not fully effective. The ability to grow in infected tissues within phagocytes is required for S. enterica virulence in systemic disease. As the infection progresses the bacteria are exposed to a complex host immune response. Consequently, in order to continue growing in the tissues, S. enterica requires the coordinated regulation of fitness genes. Bacterial gene regulation has so far been investigated largely using exposure to artificial environmental conditions or to in vitro cultured cells, and little information is available on how S. enterica adapts in vivo to sustain cell division and survival. We have studied the transcriptome, proteome and metabolic flux of Salmonella, and the transcriptome of the host during infection of wild type C57BL/6 and immune-deficient gp91-/-phox mice. Our analyses advance the understanding of how S. enterica and the host behaves during infection to a more sophisticated level than has previously been reported.


Assuntos
Proteínas de Bactérias/genética , Proteoma/genética , Salmonelose Animal/genética , Salmonelose Animal/microbiologia , Salmonella typhimurium/genética , Transcriptoma , Animais , Proteínas de Bactérias/análise , Feminino , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteoma/análise , Receptores Imunológicos/análise , Receptores Imunológicos/genética
4.
Extremophiles ; 20(3): 261-74, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26888357

RESUMO

Two haloalkaliphilic bacteria isolated from industrial brine solutions were characterized via molecular, physiological, and in silico metabolic pathway analyses. Genomes from the organisms, designated Halomonas BC1 and BC2, were sequenced; 16S ribosomal subunit-based phylogenetic analysis revealed a high level of similarity to each other and to Halomonas meridiana. Both strains were moderate halophiles with near optimal specific growth rates (≥60 % µ max) observed over <0.1-5 % (w/v) NaCl and pH ranging from 7.4 to 10.2. Isolate BC1 was further characterized by measuring uptake or synthesis of compatible solutes under different growth conditions; in complex medium, uptake and accumulation of external glycine betaine was observed while ectoine was synthesized de novo in salts medium. Transcriptome analysis of isolate BC1 grown on glucose or citrate medium measured differences in glycolysis- and gluconeogenesis-based metabolisms, respectively. The annotated BC1 genome was used to build an in silico, genome-scale stoichiometric metabolic model to study catabolic energy strategies and compatible solute synthesis under gradients of oxygen and nutrient availability. The theoretical analysis identified energy metabolism challenges associated with acclimation to high salinity and high pH. The study documents central metabolism data for the industrially and scientifically important haloalkaliphile genus Halomonas.


Assuntos
Metabolismo Energético , Halomonas/metabolismo , Metaboloma , Tolerância ao Sal , Transcriptoma , Halomonas/classificação , Halomonas/genética , Halomonas/isolamento & purificação , RNA Ribossômico 16S/genética , Salinidade
5.
Infect Immun ; 84(4): 989-997, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26787719

RESUMO

Salmonella enterica causes systemic diseases (typhoid and paratyphoid fever), nontyphoidal septicemia (NTS), and gastroenteritis in humans and other animals worldwide. An important but underrecognized emerging infectious disease problem in sub-Saharan Africa is NTS in children and immunocompromised adults. A current goal is to identify Salmonella mutants that are not pathogenic in the absence of key components of the immune system such as might be found in immunocompromised hosts. Such attenuated strains have the potential to be used as live vaccines. We have used transposon-directed insertion site sequencing (TraDIS) to screen mutants of Salmonella enterica serovar Typhimurium for their ability to infect and grow in the tissues of wild-type and immunodeficient mice. This was to identify bacterial genes that might be deleted for the development of live attenuated vaccines that would be safer to use in situations and/or geographical areas where immunodeficiencies are prevalent. The relative fitness of each of 9,356 transposon mutants, representing mutations in 3,139 different genes, was determined in gp91(-/-) phox mice. Mutations in certain genes led to reduced fitness in both wild-type and mutant mice. To validate these results, these genes were mutated by allelic replacement, and resultant mutants were retested for fitness in the mice. A defined deletion mutant of cysE was attenuated in C57BL/6 wild-type mice and immunodeficient gp91(-/-) phox mice and was effective as a live vaccine in wild-type mice.


Assuntos
Glicoproteínas de Membrana/metabolismo , NADPH Oxidases/metabolismo , Salmonelose Animal/microbiologia , Salmonella typhimurium/patogenicidade , Alelos , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Vacinas Bacterianas/imunologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Hospedeiro Imunocomprometido , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , NADPH Oxidase 2 , NADPH Oxidases/genética , Salmonelose Animal/imunologia , Salmonelose Animal/prevenção & controle , Virulência
6.
J Antimicrob Chemother ; 70(8): 2217-22, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25957382

RESUMO

OBJECTIVES: The objective of this study was to determine the distribution and genetic basis of trimethoprim resistance in Actinobacillus pleuropneumoniae isolates from pigs in England. METHODS: Clinical isolates collected between 1998 and 2011 were tested for resistance to trimethoprim and sulphonamide. The genetic basis of trimethoprim resistance was determined by shotgun WGS analysis and the subsequent isolation and sequencing of plasmids. RESULTS: A total of 16 (out of 106) A. pleuropneumoniae isolates were resistant to both trimethoprim (MIC >32 mg/L) and sulfisoxazole (MIC ≥256 mg/L), and a further 32 were resistant only to sulfisoxazole (MIC ≥256 mg/L). Genome sequence data for the trimethoprim-resistant isolates revealed the presence of the dfrA14 dihydrofolate reductase gene. The distribution of plasmid sequences in multiple contigs suggested the presence of two distinct dfrA14-containing plasmids in different isolates, which was confirmed by plasmid isolation and sequencing. Both plasmids encoded mobilization genes, the sulphonamide resistance gene sul2, as well as dfrA14 inserted into strA, a streptomycin-resistance-associated gene, although the gene order differed between the two plasmids. One of the plasmids further encoded the strB streptomycin-resistance-associated gene. CONCLUSIONS: This is the first description of mobilizable plasmids conferring trimethoprim resistance in A. pleuropneumoniae and, to our knowledge, the first report of dfrA14 in any member of the Pasteurellaceae. The identification of dfrA14 conferring trimethoprim resistance in A. pleuropneumoniae isolates will facilitate PCR screens for resistance to this important antimicrobial.


Assuntos
Infecções por Actinobacillus/veterinária , Actinobacillus pleuropneumoniae/efeitos dos fármacos , Plasmídeos , Doenças dos Suínos/microbiologia , Tetra-Hidrofolato Desidrogenase/genética , Resistência a Trimetoprima , Infecções por Actinobacillus/microbiologia , Actinobacillus pleuropneumoniae/enzimologia , Actinobacillus pleuropneumoniae/genética , Actinobacillus pleuropneumoniae/isolamento & purificação , Animais , Anti-Infecciosos/farmacologia , Inglaterra , Genoma Bacteriano , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Análise de Sequência de DNA , Sulfisoxazol/farmacologia , Suínos , Trimetoprima/farmacologia
7.
Subcell Biochem ; 64: 139-57, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23080249

RESUMO

Microbes live in multi-factorial environments and have evolved under a variety of concurrent stresses including resource scarcity. Their metabolic organization is a reflection of their evolutionary histories and, in spite of decades of research, there is still a need for improved theoretical tools to explain fundamental aspects of microbial physiology. Using ecological and economic concepts, this chapter explores a resource-ratio based theory to elucidate microbial strategies for extracting and channeling mass and energy. The theory assumes cellular fitness is maximized by allocating scarce resources in appropriate proportions to multiple stress responses. Presented case studies deconstruct metabolic networks into a complete set of minimal biochemical pathways known as elementary flux modes. An economic analysis of the elementary flux modes tabulates enzyme atomic synthesis requirements from amino acid sequences and pathway operating costs from catabolic efficiencies, permitting characterization of inherent tradeoffs between resource investment and phenotype. A set of elementary flux modes with competitive tradeoffs properties can be mathematically projected onto experimental fluxomics datasets to decompose measured phenotypes into metabolic adaptations, interpreted as cellular responses proportional to the experienced culturing stresses. The resource-ratio based method describes the experimental phenotypes with greater accuracy than other contemporary approaches and further analysis suggests the results are both statistically and biologically significant. The insight into metabolic network design principles including tradeoffs associated with concurrent stress adaptation provides a foundation for interpreting physiology as well as for rational control and engineering of medically, environmentally, and industrially relevant microbes.


Assuntos
Adaptação Fisiológica , Redes e Vias Metabólicas , Fenômenos Microbiológicos , Estresse Fisiológico , Adaptação Fisiológica/genética , Biologia Computacional/métodos , Ecossistema , Redes e Vias Metabólicas/genética , Fenômenos Microbiológicos/genética , Fenótipo , Estresse Fisiológico/genética , Análise de Sistemas , Biologia de Sistemas/métodos
8.
BMC Syst Biol ; 4: 145, 2010 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-21029416

RESUMO

BACKGROUND: To date, several genome-scale network reconstructions have been used to describe the metabolism of the yeast Saccharomyces cerevisiae, each differing in scope and content. The recent community-driven reconstruction, while rigorously evidenced and well annotated, under-represented metabolite transport, lipid metabolism and other pathways, and was not amenable to constraint-based analyses because of lack of pathway connectivity. RESULTS: We have expanded the yeast network reconstruction to incorporate many new reactions from the literature and represented these in a well-annotated and standards-compliant manner. The new reconstruction comprises 1102 unique metabolic reactions involving 924 unique metabolites--significantly larger in scope than any previous reconstruction. The representation of lipid metabolism in particular has improved, with 234 out of 268 enzymes linked to lipid metabolism now present in at least one reaction. Connectivity is emphatically improved, with more than 90% of metabolites now reachable from the growth medium constituents. The present updates allow constraint-based analyses to be performed; viability predictions of single knockouts are comparable to results from in vivo experiments and to those of previous reconstructions. CONCLUSIONS: We report the development of the most complete reconstruction of yeast metabolism to date that is based upon reliable literature evidence and richly annotated according to MIRIAM standards. The reconstruction is available in the Systems Biology Markup Language (SBML) and via a publicly accessible database http://www.comp-sys-bio.org/yeastnet/.


Assuntos
Genoma Fúngico , Metabolômica/métodos , Modelos Biológicos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Metabolismo dos Lipídeos , Anotação de Sequência Molecular , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...