Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
World Neurosurg ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39151694

RESUMO

BACKGROUND AND OBJECTIVES: The dura mater is a barrier between the brain and the surrounding environment. Injuries to the dura can lead to serious complications, therefore, ensuring a hermetic closure of the dura is a primary task for a neurosurgeon. The aim of the study is to compare the effectiveness of applying the newly developed ViscollDURA collagen membrane (VDCM), with the commercially available Durepair (xenogeneic collagen) in animal model. METHODS: A dural tear model was utilized in rats with membrane implantation using an application method. The sample size consisted of 24 rats. Group I underwent VDCM implantation, while Group II underwent Durepair implantation. Results were evaluated at 30, 60, and 90 days. The study was assessed using magnetic resonance imaging, histology, electron scanning microscopy, and immunohistochemistry. The obtained results underwent statistical analysis. RESULTS: In the clinical presentation, there were no difference between groups. Histologically, Group 1 showed comparable results to Group 2. The integration process of the membrane statistically differed between the groups. In Group 1, neovascularization and tissue replacement showed better results than in Group 2. Magnetic resonance imaging differences were observed at later stages, with group 2 showing adhesion and brain deformation in the implantation area. CONCLUSIONS: Both membranes showed safety and compatibility. The collagen membrane produced under sterile conditions demonstrated better regeneration with minimal inflammatory reaction. The study suggests that VDCM exhibits biocompatibility comparable to Durepair, providing prospects for potential applications in neurosurgery.

2.
Cornea ; 43(9): 1181-1183, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38780428

RESUMO

PURPOSE: The aim of this study was to evaluate Viscoll collagen membrane (VCM) for lamellar keratoplasty. METHODS: A 54-year-old man with grade 4 recurrent pterygium underwent lamellar keratoplasty using VCM as the graft material. Standard keratoplasty postoperative treatments, including topical antibiotic-corticosteroid and artificial tears, were administered. RESULTS: Complete graft epithelialization was achieved after 4 days of the surgery. Follow-up at 9 months showed no pterygium recurrence as well as good integration of the VCM graft into the surrounding tissues with preserved transparency. CONCLUSIONS: This case demonstrated that VCM possesses great potential as an alternative to the human donor cornea for lamellar keratoplasty; however, the application of VCM for lamellar keratoplasty still needs additional evaluation.


Assuntos
Colágeno , Transplante de Córnea , Pterígio , Humanos , Masculino , Pessoa de Meia-Idade , Transplante de Córnea/métodos , Pterígio/cirurgia , Acuidade Visual/fisiologia
3.
Childs Nerv Syst ; 40(6): 1881-1888, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38427108

RESUMO

PURPOSE: 3D printing technologies have become an integral part of modern life, and the most routinely used materials in reconstructive surgery in children are biodegradable materials. The combination of these two technologies opens up new possibilities for the application of innovative methods in neurosurgery and a patient-centered approach in medical care. The aim of the study was to determine whether a physician without specialized programming and printing skills could independently create materials in a clinical setting for the treatment of patients. METHODS: We conducted a preclinical study on 15 male Balb-C mice. Cylindrical materials made of polylactic acid (PLA) plastic were 3D printed. Sterilization of the obtained material was performed using a cold plasma sterilizer with hydrogen peroxide vapor and its plasma. The sterile material was implanted subcutaneously into the mice for 30 days, followed by histological examination. Using open-source software for modeling and printing, plates and screws made of PLA plastic were manufactured. The produced components were tested in the biomedical laboratory of the institute. RESULTS: The histological material showed that no inflammatory changes were observed at the implantation site during the entire observation period. The cellular composition is mainly represented by macrophages and fibroblasts. There was a gradual resolution of the material and its replacement by native tissues. Research conducted to assess the effectiveness of material sterilization in a cold plasma sterilizer demonstrated its high bactericidal efficiency. CONCLUSION: The method we developed for obtaining biodegradable plates and fixation elements on a 3D printer is easy to use and has demonstrated safety in a preclinical study on an animal model.


Assuntos
Camundongos Endogâmicos BALB C , Impressão Tridimensional , Animais , Masculino , Camundongos , Procedimentos Neurocirúrgicos/métodos , Poliésteres , Implantes Absorvíveis , Materiais Biocompatíveis , Humanos
4.
Biomedicines ; 12(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38255207

RESUMO

With the development of regenerative medicine in ophthalmology, the identification of cells with high proliferative potential in the limbal area has attracted the attention of ophthalmologists and offered a new option for treatment in clinical practice. Limbal stem cell deficiency (LSCD) is an identified eye disease with a difficult and negative outcome, for which the traditional treatment is keratoplasty. This study sought to evaluate the efficacy of matrix-assisted cell transplantation consisting of in vitro-cultured autologous limbal stem cells (LSCs) and type I collagen for the treatment of LSCD in rabbits. LSCD was induced in 10 rabbits by a combination of mechanical limbectomy and alkali burns. Cells were cultured on a plate for 14 days before being transferred to a collagen-based matrix for another 7 days. Rabbits were divided into two groups as follows: the experimental group (five rabbits) received matrix-assisted cell transplantation, while the control group (five rabbits) received only conservative therapy with anti-inflammatory eye drops. During the postoperative period, all rabbits were examined using slit-lamp biomicroscopy with photo-registration and fluorescent staining, impression cytology and anterior segment optical coherence tomography (AS-OCT). Rabbits were euthanized at 30 and 120 days, and their corneas were processed for histology and immunohistochemistry. As a consequence, rabbits in the experimental group demonstrated the restoration of the corneal epithelium and transparency without epithelial defects. Moreover, goblet cells were absent in the central zone of the corneal epithelium. In conclusion, our new method of treatment enhanced the corneal surface and is an effective method of treatment for LSCD in rabbits.

5.
Biomimetics (Basel) ; 8(8)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38132504

RESUMO

High-strength composite hydrogels based on collagen or chitosan-genipin were obtained via mixing using highly porous polylactide (PLA) microparticles with diameters of 50-75 µm and porosity values of over 98%. The elastic modulus of hydrogels depended on the filler concentration. The modulus increased from 80 kPa to 400-600 kPa at a concentration of porous particles of 12-15 wt.% and up to 1.8 MPa at a filling of 20-25 wt.% for collagen hydrogels. The elastic modulus of the chitosan-genipin hydrogel increases from 75 kPa to 900 kPa at a fraction of particles of 20 wt.%. These elastic modulus values cover a range of strength properties from connective tissue to cartilage tissue. It is important to note that the increase in strength in this case is accompanied by a decrease in the density of the material, that is, an increase in porosity. PLA particles were loaded with C-phycocyanin and showed an advanced release profile up to 48 h. Thus, composite hydrogels mimic the structure, biomechanics and release of biomolecules in the tissues of a living organism.

6.
Sci Rep ; 13(1): 14213, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37648686

RESUMO

Dermal papilla cells (DPCs) play roles in key functions of the epidermis such as hair generation. The use of human induced pluripotent cells (hiPSCs) makes it possible to obtain DP-like cells and study the molecular mechanisms of DPC development during embryogenesis. In this work, we studied the phenotypic trajectory of hiPSCs during their differentiation into DP-like cells and evaluated the epithelial-mesenchymal interaction potential of the resulting cell line. Specifically, we differentiated hiPSCs into neural progenitor cells (NPCs) and subsequently into DP-like cells. Analysis of bulk RNA-seq data during this process enabled us to observe gene expression dynamics during five stages of dermal differentiation. Furthermore, functional assays (organoids in both collagen gels and hanging drop cultures and tubulogenesis assays) revealed that the dermal cell lines we generated could interact with epidermal cells.


Assuntos
Células Epidérmicas , Células-Tronco Neurais , Humanos , Diferenciação Celular , Organoides , Bioensaio
7.
Int J Bioprint ; 9(2): 675, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065657

RESUMO

In situ bioprinting is one of the most clinically relevant techniques in the emerging bioprinting technology because it could be performed directly on the human body in the operating room and it does not require bioreactors for post-printing tissue maturation. However, commercial in situ bioprinters are still not available on the market. In this study, we demonstrated the benefit of the originally developed first commercial articulated collaborative in situ bioprinter for the treatment of full-thickness wounds in rat and porcine models. We used an articulated and collaborative robotic arm from company KUKA and developed original printhead and correspondence software enabling in situ bioprinting on curve and moving surfaces. The results of in vitro and in vivo experiments show that in situ bioprinting of bioink induces a strong hydrogel adhesion and enables printing on curved surfaces of wet tissues with a high level of fidelity. The in situ bioprinter was convenient to use in the operating room. Additional in vitro experiments (in vitro collagen contraction assay and in vitro 3D angiogenesis assay) and histological analyses demonstrated that in situ bioprinting improves the quality of wound healing in rat and porcine skin wounds. The absence of interference with the normal process of wound healing and even certain improvement in the dynamics of this process strongly suggests that in situ bioprinting could be used as a novel therapeutic modality in wound healing.

8.
Polymers (Basel) ; 14(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36235965

RESUMO

Restoring the anatomical and functional characteristics of the cornea using various biomaterials is especially relevant in the context of a global shortage of donor tissue. Such biomaterials must be biocompatible, strong, and transparent. Here, we report a Viscoll collagen membrane with mechanical and optical properties suitable for replacing damaged stromal tissue. After removing a portion of the stroma, a Viscoll collagen membrane was implanted into the corneas of rabbits. After 6 months, the active migration of host cells into Viscoll collagen membranes was noted, with the preservation of corneal transparency in all experimental animals. Effective integration of the Viscoll collagen membrane with corneal tissue promoted nerve regeneration in vivo, as confirmed by in vivo confocal microscopy. We also demonstrated the safety and efficacy of the Viscoll collagen membrane for corneal stroma regeneration. Thus, in combination with the proposed packaging format that provides long-term storage of up to 10 months, this material has great potential for replacing and regenerating damaged stromal tissues.

9.
Int J Mol Sci ; 23(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35269850

RESUMO

The aim of this study was to verify the applicability of high-concentration collagen-based bioink with MSC (ADSC) and decellularized ECM granules for the formation of cartilage tissue de novo after subcutaneous implantation of the scaffolds in rats. The printability of the bioink (4% collagen, 2.5% decellularized ECM granules, derived via 280 µm sieve) was shown. Three collagen-based compositions were studied: (1) with ECM; (2) with MSC; (3) with ECM and MSC. It has been established that decellularized ECM granules are able to stimulate chondrogenesis both in cell-free and MSC-laden scaffolds. Undesirable effects have been identified: bone formation as well as cartilage formation outside of the scaffold area. The key perspectives and limitations of ECM granules (powder) application have been discussed.


Assuntos
Bioimpressão , Condrogênese , Animais , Cartilagem , Colágeno , Matriz Extracelular Descelularizada , Matriz Extracelular , Impressão Tridimensional , Ratos , Engenharia Tecidual , Alicerces Teciduais
10.
Polymers (Basel) ; 13(22)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34833275

RESUMO

In dentistry, maxillofacial surgery, traumatology, and orthopedics, there is a need to use osteoplastic materials that have not only osteoinductive and osteoconductive properties but are also convenient for use. In the study, compositions based on collagen hydrogel were developed. Polylactide granules (PLA) or a traditional bone graft, a mixture of hydroxyapatite and ß-tricalcium phosphate (HAP/ß-TCP), were used for gel filling to improve mechanical osteoconductive properties of compositions. The mechanical tests showed that collagen hydrogels filled with 12 wt% highly porous PLA granules (elastic modulus 373 ± 55 kPa) or 35 wt% HAP/ß-TCP granules (elastic modulus 451 ± 32 kPa) had optimal manipulative properties. All composite components were cytocompatible. The cell's viability was above 90%, and the components' structure facilitated the cell's surface adhesion. The bone morphogenetic protein-2 (BMP-2) provided osteoinductive composition properties. It was impregnated directly into the collagen hydrogel with the addition of fibronectin or inside porous PLA granules. The implantation of a collagen hydrogel with BMP-2 and PLA granules into a critical-size calvarial defect in rats led to the formation of the most significant volume of bone tissue: 61 ± 15%. It was almost 2.5 times more than in the groups where a collagen-fibronectin hydrogel with a mixture of HAP/ß-TCP (25 ± 7%) or a fibronectin-free composition with porous PLA granules impregnated with BMP-2 (23 ± 8%) were used. Subcutaneous implantation of the compositions also showed their high biocompatibility and osteogenic potential in the absence of a bone environment. Thus, the collagen-fibronectin hydrogel with BMP-2 and PLA granules has optimal biocompatibility, osteogenic, and manipulative properties.

11.
Int J Mol Sci ; 22(21)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34768781

RESUMO

The study was aimed at the applicability of a bioink based on 4% collagen and chondrocytes for de novo cartilage formation. Extrusion-based bioprinting was used for the biofabrication. The printing parameters were tuned to obtain stable material flow. In vivo data proved the ability of the tested bioink to form a cartilage within five to six weeks after the subcutaneous scaffold implantation. Certain areas of cartilage formation were detected as early as in one week. The resulting cartilage tissue had a distinctive structure with groups of isogenic cells as well as a high content of glycosaminoglycans and type II collagen.


Assuntos
Bioimpressão/métodos , Cartilagem/citologia , Engenharia Tecidual/métodos , Animais , Cartilagem/metabolismo , Condrócitos/citologia , Condrócitos/metabolismo , Condrogênese , Colágeno/metabolismo , Impressão Tridimensional/instrumentação , Ratos , Alicerces Teciduais/química
12.
Exp Eye Res ; 207: 108580, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33872673

RESUMO

Although collagen based materials are widely used in corneal tissue engineering with promising results. The usage of such materials for the improvement of corneal biomechanical properties is still unclear. In this study, we aimed to investigate a new Viscoll collagen-based membrane for the improvement of corneal biomechanical characteristics.The right eyes of 15 Chinchilla rabbits were implanted with the membrane via an intrastromal pocket, with the contralateral intact eyes as controls. At 7, 30, 90, and 180 days post-surgery, the rabbits underwent anterior segment optical coherence topography, clinical examination, and slit-lamp microscopy. Additionally, the corneal samples also underwent histological examination followed by the assessment of the biomechanical characteristics of four treated and non-treated corneas at 30, 90, and 180 days, including keratometry at 180 days, post operation. Data are presented as means ± confidence intervals with a 95% confidence level. All the operated corneas retained their transparency throughout the study. Implantation approximately doubled the central corneal thickness. Corneas became stronger by approximately 87% between 1 and 6 months after surgery (maximum fracture load, 13.3 ± 0.8 and 24.9 ± 1.4 N, respectively), and their elasticity increased by approximately 27% over the same time frame (maximum slope of the elastic region of the stress-strain curve, 11.5 ± 0.2 and 14.6 ± 1.4 N/mm respectively). We have thus proposed a new method to increase corneal thickness and strengthen the corneal tissues while preserving their transparency and demonstrated its safety and efficacy in a rabbit model over 6 months. This may be a suitable alternative to the existing corneal collagen crosslinking procedure.


Assuntos
Colágeno , Substância Própria/cirurgia , Alicerces Teciduais , Animais , Materiais Biocompatíveis , Fenômenos Biomecânicos , Substância Própria/diagnóstico por imagem , Substância Própria/fisiopatologia , Elasticidade/fisiologia , Modelos Animais , Implantação de Prótese , Coelhos , Microscopia com Lâmpada de Fenda , Tomografia de Coerência Óptica
13.
Int J Bioprint ; 6(3): 270, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33088985

RESUMO

Biomaterials made using collagen are successfully used as a three-dimensional (3D) substrate for cell culture and considered to be promising scaffolds for creating artificial tissues. An important task that arises for engineering such materials is the simulation of physical and morphological properties of tissues, which must be restored or replaced. Modern additive technologies, including 3D bioprinting, can be applied to successfully solve this task. This review provides the latest evidence on advances of 3D bioprinting with collagen in the field of tissue engineering. It contains modern approaches for printing pure collagen bioinks consisting only of collagen and cells, as well as the obtained results from the use of pure collagen bioinks in different fields of tissue engineering.

14.
Sci Adv ; 6(29): eaba4174, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32743068

RESUMO

Magnetic levitational bioassembly of three-dimensional (3D) tissue constructs represents a rapidly emerging scaffold- and label-free approach and alternative conceptual advance in tissue engineering. The magnetic bioassembler has been designed, developed, and certified for life space research. To the best of our knowledge, 3D tissue constructs have been biofabricated for the first time in space under microgravity from tissue spheroids consisting of human chondrocytes. Bioassembly and sequential tissue spheroid fusion presented a good agreement with developed predictive mathematical models and computer simulations. Tissue constructs demonstrated good viability and advanced stages of tissue spheroid fusion process. Thus, our data strongly suggest that scaffold-free formative biofabrication using magnetic fields is a feasible alternative to traditional scaffold-based approaches, hinting a new perspective avenue of research that could significantly advance tissue engineering. Magnetic levitational bioassembly in space can also advance space life science and space regenerative medicine.

15.
J Mater Sci Mater Med ; 30(3): 31, 2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30830351

RESUMO

Collagen is one of the most promising materials for 3D bioprinting because of its distinguished biocompatibility. Cell-laden constructs made of pure collagen with or without incorporated growth supplements support engineered constructs persistence in culture and are perfectly suitable for grafting. The limiting factor for direct 3D collagen printing was poor printability of collagen solutions, especially admixed with cells or tissue spheroids. In our study, we showed that concentrated solutions of native collagen branded Viscoll were effective as bioinks with high fidelity performance. Viscoll containing 20, 30, or 40 mg/ml collagen were used for direct extrusion 3D bioprinting to form scaffolds appropriate to support spatial arrangement of tissue spheroids into rigid patterns with resolution of 0.5 mm in details. Incorporated cells demonstrated sufficient viability. Associated rheological study showed that good printability of the collagen solutions correlates with their increased storage modulus value, notably exceeding the loss modulus value. The proper combination of these physical parameters could become technological criteria for manufacturing various collagen bioinks for 3D bioprinting.


Assuntos
Materiais Biocompatíveis/química , Bioimpressão/métodos , Colágeno/química , Impressão Tridimensional , Animais , Sobrevivência Celular , Descoberta de Drogas , Humanos , Hidrogéis/química , Teste de Materiais , Camundongos , Células NIH 3T3 , Pressão , Medicina Regenerativa , Reologia , Esferoides Celulares , Estresse Mecânico , Engenharia Tecidual/métodos , Alicerces Teciduais/química
16.
Stem Cells Int ; 2015: 167025, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26351461

RESUMO

Extracellular matrix can influence stem cell choices, such as self-renewal, quiescence, migration, proliferation, phenotype maintenance, differentiation, or apoptosis. Three aspects of extracellular matrix were extensively studied during the last decade: physical properties, spatial presentation of adhesive epitopes, and molecular complexity. Over 15 different parameters have been shown to influence stem cell choices. Physical aspects include stiffness (or elasticity), viscoelasticity, pore size, porosity, amplitude and frequency of static and dynamic deformations applied to the matrix. Spatial aspects include scaffold dimensionality (2D or 3D) and thickness; cell polarity; area, shape, and microscale topography of cell adhesion surface; epitope concentration, epitope clustering characteristics (number of epitopes per cluster, spacing between epitopes within cluster, spacing between separate clusters, cluster patterns, and level of disorder in epitope arrangement), and nanotopography. Biochemical characteristics of natural extracellular matrix molecules regard diversity and structural complexity of matrix molecules, affinity and specificity of epitope interaction with cell receptors, role of non-affinity domains, complexity of supramolecular organization, and co-signaling by growth factors or matrix epitopes. Synergy between several matrix aspects enables stem cells to retain their function in vivo and may be a key to generation of long-term, robust, and effective in vitro stem cell culture systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA