Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 45(9): 7352-7373, 2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37754249

RESUMO

Understanding the relative contributions of different repair pathways to radiation-induced DNA damage responses remains a challenging issue in terms of studying the radiation injury endpoints. The comparative manifestation of homologous recombination (HR) after irradiation with different doses greatly determines the overall effectiveness of recovery in a dividing cell after irradiation, since HR is an error-free mechanism intended to perform the repair of DNA double-strand breaks (DSB) during S/G2 phases of the cell cycle. In this article, we present experimentally observed evidence of dose-dependent shifts in the relative contributions of HR in human fibroblasts after X-ray exposure at doses in the range 20-1000 mGy, which is also supported by quantitative modeling of DNA DSB repair. Our findings indicate that the increase in the radiation dose leads to a dose-dependent decrease in the relative contribution of HR in the entire repair process.

2.
Cells ; 12(8)2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37190118

RESUMO

DNA repair (DNA damage) foci observed 24 h and later after irradiation are called "residual" in the literature. They are believed to be the repair sites for complex, potentially lethal DNA double strand breaks. However, the features of their post-radiation dose-dependent quantitative changes and their role in the processes of cell death and senescence are still insufficiently studied. For the first time in one work, a simultaneous study of the association of changes in the number of residual foci of key DNA damage response (DDR) proteins (γH2AX, pATM, 53BP1, p-p53), the proportion of caspase-3 positive, LC-3 II autophagic and SA-ß-gal senescent cells was carried out 24-72 h after fibroblast irradiation with X-rays at doses of 1-10 Gy. It was shown that with an increase in time after irradiation from 24 h to 72 h, the number of residual foci and the proportion of caspase-3 positive cells decrease, while the proportion of senescent cells, on the contrary, increases. The highest number of autophagic cells was noted 48 h after irradiation. In general, the results obtained provide important information for understanding the dynamics of the development of a dose-dependent cellular response in populations of irradiated fibroblasts.


Assuntos
Dano ao DNA , Histonas , Raios X , Histonas/metabolismo , Caspase 3/metabolismo , Relação Dose-Resposta à Radiação , Fibroblastos/metabolismo , Senescência Celular , Autofagia
3.
Materials (Basel) ; 15(18)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36143511

RESUMO

In this work, the growth mechanism of aluminum nitride (AlN) epitaxial films by hydride vapor phase epitaxy (HVPE) on silicon carbide (SiC) epitaxial layers grown on silicon (110) substrates is investigated. The peculiarity of this study is that the SiC layers used for the growth of AlN films are synthesized by the method of coordinated substitution of atoms. In this growth method, a part of the silicon atoms in the silicon substrate is replaced with carbon atoms. As a result of atom substitution, the initially smooth Si(110) surface transforms into a SiC surface covered with octahedron-shaped structures having the SiC(111) and SiC(111¯) facets. The SiC(111)/(111¯) facets forming the angle of 35.3° with the original Si(110) surface act as "substrates" for further growth of semipolar AlN. The structure and morphology of AlN films are investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), reflection high-energy electron diffraction (RHEED) and Raman spectroscopy. It is found that the AlN layers are formed by merged hexagonal microcrystals growing in two directions, and the following relation is approximately satisfied for both crystal orientations: AlN(101¯3)||Si(110). The full-width at half-maximum (FWHM) of the X-ray rocking curve for the AlN(101¯3) diffraction peak averaged over the sample area is about 20 arcmin. A theoretical model explaining the presence of two orientations of AlN films on hybrid SiC/Si(110) substrates is proposed, and a method for controlling their orientation is presented.

4.
Materials (Basel) ; 15(13)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35806775

RESUMO

In this work, silicon carbide layers containing silicon vacancies are grown by the Method of Coordinated Substitution of Atoms (MCSA). The main idea of this fundamentally new method is that silicon vacancies are first created in silicon, which is much simpler, and only then is silicon converted into silicon carbide by chemical reaction with carbon monoxide. The dielectric function of silicon carbide containing silicon vacancies, grown on both n- and p-type silicon substrates, is measured for the first time. The density functional method in the spin-polarized approximation is used to calculate the dielectric function of silicon carbide containing silicon vacancies. It is shown that the influence of the magnetic moment of vacancies on the dielectric function is decisive. Qualitative correspondence of the computational model to the obtained experimental data is demonstrated. It is discovered that silicon vacancies make silicon carbide much less transparent. It is shown that the imaginary part of the dielectric function is described as a sum of oscillatory peaks in the form of the Gaussian functions. Vacancies lead, as a rule, to one or two additional peaks. According to the amplitude and position of the additional peaks, it is possible to qualitatively estimate the concentration of vacancies and their charge.

5.
Materials (Basel) ; 14(19)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34639976

RESUMO

In the present work, a new method for obtaining silicon carbide of the cubic polytype 3C-SiC with silicon vacancies in a stable state is proposed theoretically and implemented experimentally. The idea of the method is that the silicon vacancies are first created by high-temperature annealing in a silicon substrate Si(111) doped with boron B, and only then is this silicon converted into 3C-SiC(111), due to a chemical reaction with carbon monoxide CO. A part of the silicon vacancies that have bypassed "chemical selection" during this transformation get into the SiC. As the process of SiC synthesis proceeds at temperatures of ~1350 °C, thermal fluctuations in the SiC force the carbon atom C adjacent to the vacancy to jump to its place. In this case, an almost flat cluster of four C atoms and an additional void right under it are formed. This stable state of the vacancy, by analogy with NV centers in diamond, is designated as a C4V center. The C4V centers in the grown 3C-SiC were detected experimentally by Raman spectroscopy and spectroscopic ellipsometry. Calculations performed by methods of density-functional theory have revealed that the C4V centers have a magnetic moment equal to the Bohr magneton µB and lead to spin polarization in the SiC if the concentration of C4V centers is sufficiently high.

6.
Materials (Basel) ; 14(1)2020 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-33375252

RESUMO

Thin films of single-crystal silicon carbide of cubic polytype with a thickness of 40-100 nm, which were grown from the silicon substrate material by the method of coordinated substitution of atoms by a chemical reaction of silicon with carbon monoxide CO gas, have been studied by spectral ellipsometry in the photon energy range of 0.5-9.3 eV. It has been found that a thin intermediate layer with the dielectric constant corresponding to a semimetal is formed at the 3C-SiC(111)/Si(111) interface. The properties of this interface corresponding to the minimum energy have been calculated using quantum chemistry methods. It has turned out that silicon atoms from the substrate are attracted to the interface located on the side of the silicon carbide (SiC) film. The symmetry group of the entire system corresponds to P3m1. The calculations have shown that Si atoms in silicon carbide at the interface, which are the most distant from the Si atoms of the substrate and do not form a chemical bond with them (there are only 12% of them), provide a sharp peak in the density of electronic states near the Fermi energy. As a result, the interface acquires semimetal properties that fully correspond to the ellipsometry data.

7.
Opt Lett ; 40(6): 926-9, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25768148

RESUMO

Transformation optics with quasi-conformal mapping is applied to design a Generalized Maxwell Fish-eye Lens (GMFEL) which can be used as a power splitter. The flattened focal line obtained as a result of the transformation allows the lens to adapt to planar antenna feeding systems. Moreover, sub-unity refraction index regions are reduced because of the space compression effect of the transformation, reducing the negative impact of removing those regions when implementing the lens. A technique to reduce the maximum value of the refractive index is presented to compensate for its increase because of the transformation. Finally, the lens is implemented with the bed of nails technology, employing a commercial dielectric slab to improve the range of the effective refractive index. The lens was simulated with a 3D full-wave simulator to validate the design, obtaining an original and feasible power splitter based on a dielectric lens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...