Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Insects ; 13(7)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35886764

RESUMO

Honey bees need pollen and nectar sources to survive in nature. Particularly, having young bees in colonies is vital before wintering, and proper feeding is necessary to achieve this. In the present study, the effect of feeding with pollen sources of different protein content on colony performance, wintering ability and in-vitro longevity of colonies that weakened after feeding with pine honey in autumn, or that needed to enter the winter period, was investigated. The experiment was carried out in 48 colonies divided into six groups as follows: control, syrup, mixed pollen, Cistus creticus pollen (Pink rock-rose), Papaver somniferum pollen (Opium poppy), and commercial bee cake groups. In particular, the P. somniferum pollen group was different (p < 0.01) from the other experiment groups with the number of bee frames (3.44), the area with brood (1184.14 cm2) and the wintering ability of 92.19%. The effect of nutritional differences on survival was found to be statistically significant in vitro and this supports the colony results in the natural environment (p < 0.001). The P. somniferum group has the longest longevity with 23 days. Pollen preferences of honey bees were P. somniferum, C. creticus, and mixed pollen, respectively.

2.
PLoS One ; 14(6): e0218365, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31246964

RESUMO

Aluminum is increasingly globally bioavailable with acidification from industrial emissions and poor mining practices. This bioavailability increases uptake by flora, contaminating products such as fruit, pollen, and nectar. Concentrations of aluminum in fruit and pollen have been reported between 0.05 and 670mg/L in North America. This is particularly concerning for pollinators that ingest pollen and nectar. Honey bees represent a globally present species experiencing decline in Europe and North America. Region specific decline may be a result of differential toxicity of exposure between subspecies. We find that European honey bees (Apis mellifera mellifera) may have differential toxicity as compared to two allopatric Mediterranean subspecies (Apis mellifera carnica and Apis mellifera caucasica) which showed no within subspecies exposure differences. European honey bees were then used in a laboratory experiment and exposed to aluminum in their daily water supply to mimic nectar contamination at several concentrations. After approximately 3 weeks of aluminum ingestion these bees showed significantly shorter captive longevity than controls at concentrations as low as 10.4mg/L and showed a possible hormetic response in motility. We also compared European honey bees to Africanized/European hybrid bees (Apis mellifera mellifera/scutellata hybrid) in short-term free-flight experiments. Neither the European honey bee nor the hybrid showed immediate foraging deficits in flight time, color choice, or floral manipulation after aluminum exposure. We conclude that European honey bees are at the greatest risk of aluminum related decline from chronic ingestion as compared to other subspecies and offer new methods for future use in honey bee toxicology.


Assuntos
Alumínio/efeitos adversos , Abelhas/efeitos dos fármacos , Abelhas/fisiologia , Comportamento Animal , Ritmo Circadiano , Exposição Ambiental , Polinização , Animais
3.
Ecotoxicol Environ Saf ; 143: 80-86, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28505483

RESUMO

Pollinator decline is of international concern because of the economic services these organisms provide. Commonly cited sources of decline are toxicants, habitat fragmentation, and parasites. Toxicant exposure can occur through uptake and distribution from plant tissues and resources such as pollen and nectar. Metals such as aluminum can be distributed to pollinators and other herbivores through this route especially in acidified or mined areas. A free-flying artificial flower patch apparatus was used to understand how two concentrations of aluminum (2mg/L and 20mg/L) may affect the learning, orientation, and foraging behaviors of honey bees (Apis mellifera) in Turkey. The results show that a single dose of aluminum immediately affects the floral decision making of honey bees potentially by altering sucrose perception, increasing activity level, or reducing the likelihood of foraging on safer or uncontaminated resource patches. We conclude that aluminum exposure may be detrimental to foraging behaviors and potentially to other ecologically relevant behaviors.


Assuntos
Alumínio/toxicidade , Abelhas/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Animais , Abelhas/fisiologia , Flores , Polinização
4.
Iran J Parasitol ; 11(2): 259-264, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28096862

RESUMO

BACKGROUND: The aim of this study was to determine the prevalence of the Nosema ceranae and Nosema apis among apiaries using both spore counts and multiplex PCR and the replacement of N. apis by N. ceranae in some regions of Turkey. METHODS: A hundred honey bee samples were collected from 99 apiaries in 11 different locations in 2011-2012 in Turkey. Nosema infection degree from collected samples was determined using light microscope and molecular detection of Nosema spp. (N. ceranae and N. apis) was performed using specific primers by multiplex PCR. RESULTS: N. ceranae was only found spores in sampling areas using molecular diagnosis. N. apis was not detected in whole sampling areas using both techniques. There are no Nosema spores detected in Konya one location using two techniques. The nucleotide sequences from amplification products of the Nosema infested honeybee samples were (98%) identical with the sequence of N. ceranae for many countries deposited in the GenBank database in this study. CONCLUSION: The present study illustrated that N. ceranae is the only spores for sampled areas in 2011-2012. The study could also indicate that N. ceranae has been replaced instead of N. apis in Turkey. In addition, the prevalence of N. ceranae and two microsporodia spores effects on honey bee colonies in Turkey were needed to determine with intensive sampling, periodically.

5.
Evol Appl ; 5(7): 746-56, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23144660

RESUMO

Oceanic islands have reduced resources and natural enemies and potentially affect life history traits of arriving organisms. Among the most spectacular invasions in the Western hemisphere is that of the Africanized honeybee. We hypothesized that in the oceanic island Puerto Rico, Africanized bees will exhibit differences from the mainland population such as for defensiveness and other linked traits. We evaluated the extent of Africanization through three typical Africanized traits: wing size, defensive behavior, and resistance to Varroa destructor mites. All sampled colonies were Africanized by maternal descent, with over 65% presence of European alleles at the S-3 nuclear locus. In two assays evaluating defense, Puerto Rican bees showed low defensiveness similar to European bees. In morphology and resistance to mites, Africanized bees from Puerto Rico are similar to other Africanized bees. In behavioral assays on mechanisms of resistance to Varroa, we directly observed that Puerto Rican Africanized bees groomed-off and bit the mites as been observed in other studies. In no other location, Africanized bees have reduced defensiveness while retaining typical traits such as wing size and mite resistance. This mosaic of traits that has resulted during the invasion of an oceanic island has implications for behavior, evolution, and agriculture.

6.
J Insect Physiol ; 53(7): 691-8, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17574568

RESUMO

Colony condition and differences in individual preferences influence forage type collected by bees. Physiological bases for the changing preferences of individual foragers are just beginning to be examined. Recently, for honey bees octopamine is shown to influence age at onset of foraging and probability of dance for rewards. However, octopamine has not been causally linked with foraging preference in the field. We tested the hypothesis that changes in octopamine may alter forage type (preference hypothesis). We treated identified foragers orally with octopamine or its immediate precursor, tyramine, or sucrose syrup (control). Octopamine-treated foragers switched type of material collected; control bees did not. Tyramine group results were not different from the control group. In addition, sugar concentrations of nectar collected by foragers after octopamine treatment were lower than before treatment, indicating change in preference. In contrast, before and after nectar concentrations for bees in the control group were similar. These results, taken together, support the preference hypothesis.


Assuntos
Abelhas/fisiologia , Comportamento Alimentar/efeitos dos fármacos , Preferências Alimentares/fisiologia , Octopamina/farmacologia , Animais , Abelhas/efeitos dos fármacos , Feminino , Flores/parasitologia , Preferências Alimentares/efeitos dos fármacos , Comportamento Social
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...