Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 13(1): 7293, 2022 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-36435847

RESUMO

It is thought that many of the simple and complex genomic rearrangements associated with congenital diseases and cancers stem from mistakes made during the restart of collapsed replication forks by recombination enzymes. It is hypothesised that this recombination-mediated restart process transitions from a relatively accurate initiation phase to a less accurate elongation phase characterised by extensive template switching between homologous, homeologous and microhomologous DNA sequences. Using an experimental system in fission yeast, where fork collapse is triggered by a site-specific replication barrier, we show that ectopic recombination, associated with the initiation of recombination-dependent replication (RDR), is driven mainly by the Rad51 recombinase, whereas template switching, during the elongation phase of RDR, relies more on DNA annealing by Rad52. This finding provides both evidence and a mechanistic basis for the transition hypothesis.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Replicação do DNA , DNA , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Ligação a DNA/metabolismo
3.
Elife ; 82019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31855181

RESUMO

Previously we reported that a process called inter-fork strand annealing (IFSA) causes genomic deletions during the termination of DNA replication when an active replication fork converges on a collapsed fork (Morrow et al., 2017). We also identified the FANCM-related DNA helicase Fml1 as a potential suppressor of IFSA. Here, we confirm that Fml1 does indeed suppress IFSA, and show that this function depends on its catalytic activity and ability to interact with Mhf1-Mhf2 via its C-terminal domain. Finally, a plausible mechanism of IFSA suppression is demonstrated by the finding that Fml1 can catalyse regressed fork restoration in vitro.


Assuntos
Proteínas Cromossômicas não Histona/genética , DNA Helicases/genética , Recombinação Genética , Proteínas de Schizosaccharomyces pombe/genética , Replicação do DNA/genética , Genoma Fúngico/genética , Mitose/genética , Schizosaccharomyces/genética
4.
Elife ; 82019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31149897

RESUMO

Protein-DNA complexes can impede DNA replication and cause replication fork collapse. Whilst it is known that homologous recombination is deployed in such instances to restart replication, it is unclear how a stalled fork transitions into a collapsed fork at which recombination proteins can load. Previously we established assays in Schizosaccharomyces pombe for studying recombination induced by replication fork collapse at the site-specific protein-DNA barrier RTS1 (Nguyen et al., 2015). Here, we provide evidence that efficient recruitment/retention of two key recombination proteins (Rad51 and Rad52) to RTS1 depends on unloading of the polymerase sliding clamp PCNA from DNA by Elg1. We also show that, in the absence of Elg1, reduced recombination is partially suppressed by deleting fbh1 or, to a lesser extent, srs2, which encode known anti-recombinogenic DNA helicases. These findings suggest that PCNA unloading by Elg1 is necessary to limit Fbh1 and Srs2 activity, and thereby enable recombination to proceed.


Assuntos
Proteínas de Transporte/metabolismo , Replicação do DNA , Antígeno Nuclear de Célula em Proliferação/metabolismo , Recombinação Genética/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , DNA Fúngico/metabolismo , Fluorescência , Modelos Biológicos , Mutação/genética , Fase S
5.
Elife ; 82019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30667359

RESUMO

Homologous recombination helps ensure the timely completion of genome duplication by restarting collapsed replication forks. However, this beneficial function is not without risk as replication restarted by homologous recombination is prone to template switching (TS) that can generate deleterious genome rearrangements associated with diseases such as cancer. Previously we established an assay for studying TS in Schizosaccharomyces pombe (Nguyen et al., 2015). Here, we show that TS is detected up to 75 kb downstream of a collapsed replication fork and can be triggered by head-on collision between the restarted fork and RNA Polymerase III transcription. The Pif1 DNA helicase, Pfh1, promotes efficient restart and also suppresses TS. A further three conserved helicases (Fbh1, Rqh1 and Srs2) strongly suppress TS, but there is no change in TS frequency in cells lacking Fml1 or Mus81. We discuss how these factors likely influence TS.


Assuntos
Replicação do DNA/genética , Recombinação Homóloga/genética , Schizosaccharomyces/genética , Moldes Genéticos , Pareamento de Bases/genética , Mutação/genética , RNA de Transferência/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
7.
Elife ; 62017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28586299

RESUMO

Problems that arise during DNA replication can drive genomic alterations that are instrumental in the development of cancers and many human genetic disorders. Replication fork barriers are a commonly encountered problem, which can cause fork collapse and act as hotspots for replication termination. Collapsed forks can be rescued by homologous recombination, which restarts replication. However, replication restart is relatively slow and, therefore, replication termination may frequently occur by an active fork converging on a collapsed fork. We find that this type of non-canonical fork convergence in fission yeast is prone to trigger deletions between repetitive DNA sequences via a mechanism we call Inter-Fork Strand Annealing (IFSA) that depends on the recombination proteins Rad52, Exo1 and Mus81, and is countered by the FANCM-related DNA helicase Fml1. Based on our findings, we propose that IFSA is a potential threat to genomic stability in eukaryotes.


Assuntos
Pareamento de Bases , Replicação do DNA , Recombinação Homóloga , Schizosaccharomyces/genética , Deleção de Sequência , DNA Helicases/metabolismo , Instabilidade Genômica , Recombinases/metabolismo , Schizosaccharomyces/enzimologia
8.
Sci Rep ; 6: 22837, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26957021

RESUMO

DNA double-strand break (DSB) repair by homologous recombination (HR) involves resection of the break to expose a 3' single-stranded DNA tail. In budding yeast, resection occurs in two steps: initial short-range resection, performed by Mre11-Rad50-Xrs2 and Sae2; and long-range resection catalysed by either Exo1 or Sgs1-Dna2. Here we use genetic assays to investigate the importance of Exo1 and the Sgs1 homologue Rqh1 for DNA repair and promotion of direct repeat recombination in the fission yeast Schizosaccharomyces pombe. We find that Exo1 and Rqh1 function in alternative redundant pathways for promoting survival following replication fork breakage. Exo1 promotes replication fork barrier-induced direct repeat recombination but intriguingly limits recombination induced by fork breakage. Direct repeat recombination induced by ultraviolet light depends on either Exo1 or Rqh1. Finally, we show that Rqh1 plays a major role in limiting Exo1-dependent direct repeat recombination induced by replication fork stalling but only a minor role in constraining recombination induced by fork breakage. The implications of our findings are discussed in the context of the benefits that long-range resection may bring to processing perturbed replication forks.


Assuntos
DNA Helicases/metabolismo , Replicação do DNA , Exodesoxirribonucleases/antagonistas & inibidores , Recombinação Genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimologia , Schizosaccharomyces/genética , Reparo do DNA
9.
Elife ; 4: e04539, 2015 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-25806683

RESUMO

The completion of genome duplication during the cell cycle is threatened by the presence of replication fork barriers (RFBs). Following collision with a RFB, replication proteins can dissociate from the stalled fork (fork collapse) rendering it incapable of further DNA synthesis unless recombination intervenes to restart replication. We use time-lapse microscopy and genetic assays to show that recombination is initiated within ∼ 10 min of replication fork blockage at a site-specific barrier in fission yeast, leading to a restarted fork within ∼ 60 min, which is only prevented/curtailed by the arrival of the opposing replication fork. The restarted fork is susceptible to further collapse causing hyper-recombination downstream of the barrier. Surprisingly, in our system fork restart is unnecessary for maintaining cell viability. Seemingly, the risk of failing to complete replication prior to mitosis is sufficient to warrant the induction of recombination even though it can cause deleterious genetic change.


Assuntos
Replicação do DNA , DNA Fúngico/genética , Regulação Fúngica da Expressão Gênica , Proteína Fosfatase 2/genética , Recombinação Genética , Schizosaccharomyces/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Divisão Celular , DNA Helicases/genética , DNA Helicases/metabolismo , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Genes Reporter , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Mitose , Proteína Fosfatase 2/metabolismo , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Imagem com Lapso de Tempo
10.
Nucleic Acids Res ; 42(22): 13723-35, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25414342

RESUMO

During meiosis programmed DNA double-strand breaks (DSBs) are repaired by homologous recombination using the sister chromatid or the homologous chromosome (homolog) as a template. This repair results in crossover (CO) and non-crossover (NCO) recombinants. Only CO formation between homologs provides the physical linkages guiding correct chromosome segregation, which are essential to produce healthy gametes. The factors that determine the CO/NCO decision are still poorly understood. Using Schizosaccharomyces pombe as a model we show that the Rad51/Dmc1-paralog complexes Rad55-Rad57 and Rdl1-Rlp1-Sws1 together with Swi5-Sfr1 play a major role in antagonizing both the FANCM-family DNA helicase/translocase Fml1 and the RecQ-type DNA helicase Rqh1 to limit hybrid DNA formation and promote Mus81-Eme1-dependent COs. A common attribute of these protein complexes is an ability to stabilize the Rad51/Dmc1 nucleoprotein filament, and we propose that it is this property that imposes constraints on which enzymes gain access to the recombination intermediate, thereby controlling the manner in which it is processed and resolved.


Assuntos
DNA Helicases/fisiologia , Proteínas de Ligação a DNA/fisiologia , Meiose/genética , Recombinação Genética , Proteínas de Schizosaccharomyces pombe/fisiologia , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/fisiologia , Quebras de DNA de Cadeia Dupla , DNA Helicases/antagonistas & inibidores , DNA Helicases/genética , Reparo do DNA , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Endonucleases/fisiologia , Deleção de Genes , Recombinases Rec A/genética , Recombinases Rec A/fisiologia , Proteínas de Schizosaccharomyces pombe/genética
11.
Biochem Soc Trans ; 41(6): 1726-30, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24256282

RESUMO

Centromere proteins CENP-S and CENP-X are members of the constitutive centromere-associated network, which is a conserved group of proteins that are needed for the assembly and function of kinetochores at centromeres. Intriguingly CENP-S and CENP-X have alter egos going by the names of MHF1 (FANCM-associated histone-fold protein 1) and MHF2 respectively. In this guise they function with a DNA translocase called FANCM (Fanconi's anemia complementation group M) to promote DNA repair and homologous recombination. In the present review we discuss current knowledge of the biological roles of CENP-S and CENP-X and how their dual existence may be a common feature of CCAN (constitutive centromere-associated network) proteins.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Recombinação Genética , Proteínas Supressoras de Tumor/metabolismo , DNA/genética , DNA/metabolismo , Humanos
12.
Open Biol ; 3(9): 130102, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-24026537

RESUMO

The histone-fold proteins Mhf1/CENP-S and Mhf2/CENP-X perform two important functions in vertebrate cells. First, they are components of the constitutive centromere-associated network, aiding kinetochore assembly and function. Second, they work with the FANCM DNA translocase to promote DNA repair. However, it has been unclear whether there is crosstalk between these roles. We show that Mhf1 and Mhf2 in fission yeast, as in vertebrates, serve a dual function, aiding DNA repair/recombination and localizing to centromeres to promote chromosome segregation. Importantly, these functions are distinct, with the former being dependent on their interaction with the FANCM orthologue Fml1 and the latter not. Together with Fml1, they play a second role in aiding chromosome segregation by processing sister chromatid junctions. However, a failure of this activity does not manifest dramatically increased levels of chromosome missegregation due to the Mus81-Eme1 endonuclease, which acts as a failsafe to resolve DNA junctions before the end of mitosis.


Assuntos
Centrômero/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , DNA Helicases/metabolismo , Recombinação Genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citologia , Schizosaccharomyces/metabolismo , Proteínas Cromossômicas não Histona/análise , Segregação de Cromossomos , DNA Helicases/análise , Reparo do DNA , DNA Fúngico/genética , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Endonucleases/metabolismo , Mitose , Mapas de Interação de Proteínas , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/análise
13.
PLoS One ; 8(8): e71960, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23936535

RESUMO

The SUMO-dependent ubiquitin ligase Slx8 plays key roles in promoting genome stability, including the processing of trapped Topoisomerase I (Top1) cleavage complexes and removal of toxic SUMO conjugates. We show that it is the latter function that constitutes Slx8's primary role in fission yeast. The SUMO conjugates in question are formed by the SUMO ligase Pli1, which is necessary for limiting spontaneous homologous recombination when Top1 is present. Surprisingly there is no requirement for Pli1 to limit recombination in the vicinity of a replication fork blocked at the programmed barrier RTS1. Notably, once committed to Pli1-mediated SUMOylation Slx8 becomes essential for genotoxin resistance, limiting both spontaneous and RTS1 induced recombination, and promoting normal chromosome segregation. We show that Slx8 removes Pli1-dependent Top1-SUMO conjugates and in doing so helps to constrain recombination at RTS1. Overall our data highlight how SUMOylation and SUMO-dependent ubiquitylation by the Pli1-Slx8 axis contribute in different ways to maintain genome stability.


Assuntos
DNA Topoisomerases Tipo I/metabolismo , Instabilidade Genômica , Proteína SUMO-1/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Sumoilação , Ubiquitina-Proteína Ligases/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Segregação de Cromossomos/efeitos dos fármacos , Segregação de Cromossomos/genética , Replicação do DNA/efeitos dos fármacos , Replicação do DNA/genética , DNA Topoisomerases Tipo I/deficiência , DNA Topoisomerases Tipo I/genética , DNA Fúngico/biossíntese , DNA Fúngico/genética , Deleção de Genes , Instabilidade Genômica/efeitos dos fármacos , Ligases , Mutagênicos/toxicidade , Recombinação Genética/efeitos dos fármacos , Recombinação Genética/genética , Schizosaccharomyces/citologia , Schizosaccharomyces/enzimologia , Sumoilação/efeitos dos fármacos
14.
Science ; 336(6088): 1585-8, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-22723423

RESUMO

The formation of healthy gametes depends on programmed DNA double-strand breaks (DSBs), which are each repaired as a crossover (CO) or non-crossover (NCO) from a homologous template. Although most of these DSBs are repaired without giving COs, little is known about the genetic requirements of NCO-specific recombination. We show that Fml1, the Fanconi anemia complementation group M (FANCM)-ortholog of Schizosaccharomyces pombe, directs the formation of NCOs during meiosis in competition with the Mus81-dependent pro-CO pathway. We also define the Rad51/Dmc1-mediator Swi5-Sfr1 as a major determinant in biasing the recombination process in favor of Mus81, to ensure the appropriate amount of COs to guide meiotic chromosome segregation. The conservation of these proteins from yeast to humans suggests that this interplay may be a general feature of meiotic recombination.


Assuntos
Troca Genética , DNA Helicases/metabolismo , Recombinação Homóloga , Meiose , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Segregação de Cromossomos , Cromossomos Fúngicos/fisiologia , Quebras de DNA de Cadeia Dupla , DNA Helicases/genética , Reparo do DNA , DNA Fúngico/química , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endonucleases/genética , Endonucleases/metabolismo , Mutação , Recombinases/genética , Recombinases/metabolismo , Schizosaccharomyces/fisiologia , Proteínas de Schizosaccharomyces pombe/genética
15.
Genes Dev ; 26(6): 594-602, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22426535

RESUMO

Bidirectionally moving DNA replication forks merge at termination sites composed of accidental or programmed DNA-protein barriers. If merging fails, then regions of unreplicated DNA can result in the breakage of DNA during mitosis, which in turn can give rise to genome instability. Despite its importance, little is known about the mechanisms that promote the final stages of fork merging in eukaryotes. Here we show that the Pif1 family DNA helicase Pfh1 plays a dual role in promoting replication fork termination. First, it facilitates replication past DNA-protein barriers, and second, it promotes the merging of replication forks. A failure of these processes in Pfh1-deficient cells results in aberrant chromosome segregation and heightened genome instability.


Assuntos
DNA Helicases/metabolismo , Replicação do DNA , Instabilidade Genômica , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Segregação de Cromossomos , DNA Helicases/genética , DNA Fúngico/genética , DNA Ribossômico/genética , Schizosaccharomyces/enzimologia , Proteínas de Schizosaccharomyces pombe/genética
16.
Nucleic Acids Res ; 39(15): 6568-84, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21576223

RESUMO

Most DNA double-strand breaks (DSBs) in S- and G2-phase cells are repaired accurately by Rad51-dependent sister chromatid recombination. However, a minority give rise to gross chromosome rearrangements (GCRs), which can result in disease/death. What determines whether a DSB is repaired accurately or inaccurately is currently unclear. We provide evidence that suggests that perturbing replication by a non-programmed protein-DNA replication fork barrier results in the persistence of replication intermediates (most likely regions of unreplicated DNA) into mitosis, which results in anaphase bridge formation and ultimately to DNA breakage. However, unlike previously characterised replication-associated DSBs, these breaks are repaired mainly by Rad51-independent processes such as single-strand annealing, and are therefore prone to generate GCRs. These data highlight how a replication-associated DSB can be predisposed to give rise to genome rearrangements in eukaryotes.


Assuntos
Quebras de DNA de Cadeia Dupla , Replicação do DNA , Recombinação Genética , Anáfase/genética , Deleção Cromossômica , DNA/ultraestrutura , DNA Helicases/metabolismo , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Repressores Lac/metabolismo , Mitose , Mutação , Regiões Operadoras Genéticas , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
17.
Nucleic Acids Res ; 39(5): 1718-31, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21149262

RESUMO

The F-box DNA helicase Fbh1 constrains homologous recombination in vegetative cells, most likely through an ability to displace the Rad51 recombinase from DNA. Here, we provide the first evidence that Fbh1 also serves a vital meiotic role in fission yeast to promote normal chromosome segregation. In the absence of Fbh1, chromosomes remain entangled or segregate unevenly during meiosis, and genetic and cytological data suggest that this results in part from a failure to efficiently dismantle Rad51 nucleofilaments that form during meiotic double-strand break repair.


Assuntos
Segregação de Cromossomos , DNA Helicases/fisiologia , Proteínas F-Box/fisiologia , Meiose/genética , Rad51 Recombinase/análise , Proteínas de Schizosaccharomyces pombe/análise , Proteínas de Schizosaccharomyces pombe/fisiologia , Schizosaccharomyces/genética , Quebras de DNA de Cadeia Dupla , DNA Helicases/análise , DNA Helicases/genética , Reparo do DNA , DNA Fúngico/análise , Proteínas de Ligação a DNA/genética , Proteínas F-Box/análise , Proteínas F-Box/genética , Conversão Gênica , Deleção de Genes , Proteínas Nucleares/análise , Recombinação Genética , Schizosaccharomyces/fisiologia , Proteínas de Schizosaccharomyces pombe/genética , Esporos Fúngicos/crescimento & desenvolvimento
18.
Mol Cell ; 37(6): 865-78, 2010 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-20347428

RESUMO

FANCM remodels branched DNA structures and plays essential roles in the cellular response to DNA replication stress. Here, we show that FANCM forms a conserved DNA-remodeling complex with a histone-fold heterodimer, MHF. We find that MHF stimulates DNA binding and replication fork remodeling by FANCM. In the cell, FANCM and MHF are rapidly recruited to forks stalled by DNA interstrand crosslinks, and both are required for cellular resistance to such lesions. In vertebrates, FANCM-MHF associates with the Fanconi anemia (FA) core complex, promotes FANCD2 monoubiquitination in response to DNA damage, and suppresses sister-chromatid exchanges. Yeast orthologs of these proteins function together to resist MMS-induced DNA damage and promote gene conversion at blocked replication forks. Thus, FANCM-MHF is an essential DNA-remodeling complex that protects replication forks from yeast to human.


Assuntos
DNA Helicases/metabolismo , DNA/metabolismo , Instabilidade Genômica , Histonas/metabolismo , Dobramento de Proteína , Multimerização Proteica , Sequência de Aminoácidos , Animais , Linhagem Celular , Galinhas , DNA/genética , Dano ao DNA , DNA Helicases/química , DNA Helicases/genética , Replicação do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Evolução Molecular , Proteínas de Grupos de Complementação da Anemia de Fanconi , Humanos , Dados de Sequência Molecular , Ligação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Alinhamento de Sequência , Troca de Cromátide Irmã
19.
Methods Mol Biol ; 521: 535-52, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19563128

RESUMO

Replication forks (RFs) frequently encounter barriers or lesions in template DNA that can cause them to stall and/or break. Efficient genome duplication therefore depends on multiple mechanisms that variously act to stabilize, repair, and restart perturbed RFs. Integral to at least some of these mechanisms are homologous recombination (HR) proteins, but our knowledge of how they act to ensure high-fidelity genome replication remains incomplete. To help better understand the relationship between DNA replication and HR, fission yeast strains have been engineered to contain intrachromosmal recombination substrates consisting of non-tandem direct repeats of ade6 heteroalleles. The substrates have been modified to include site-specific RF barriers within the duplication. Importantly, direct repeat recombinants appear to arise predominantly during DNA replication via sister chromatid interactions and are induced by factors that perturb RFs. Using simple plating experiments to assay recombinant formation, these strains have proved to be useful tools in monitoring the effects of impeding RFs on HR and its genetic control. The strains are available on request, and here we describe in detail how some of them can be used to determine the effect of your mutation of choice on spontaneous, DNA damage-induced, and replication block-induced recombinant formation.


Assuntos
Replicação do DNA , DNA Fúngico/biossíntese , DNA Fúngico/genética , Recombinação Genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Dano ao DNA , Genes Fúngicos , Mutagênicos/toxicidade , Mutação , Recombinação Genética/efeitos dos fármacos , Recombinação Genética/efeitos da radiação , Sequências Repetitivas de Ácido Nucleico , Schizosaccharomyces/efeitos dos fármacos , Schizosaccharomyces/efeitos da radiação , Raios Ultravioleta
20.
Mol Cell Biol ; 29(17): 4742-56, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19546232

RESUMO

Controlling the loading of Rad51 onto DNA is important for governing when and how homologous recombination is used. Here we use a combination of genetic assays and indirect immunofluorescence to show that the F-box DNA helicase (Fbh1) functions in direct opposition to the Rad52 orthologue Rad22 to curb Rad51 loading onto DNA in fission yeast. Surprisingly, this activity is unnecessary for limiting spontaneous direct-repeat recombination. Instead it appears to play an important role in preventing recombination when replication forks are blocked and/or broken. When overexpressed, Fbh1 specifically reduces replication fork block-induced recombination, as well as the number of Rad51 nuclear foci that are induced by replicative stress. These abilities are dependent on its DNA helicase/translocase activity, suggesting that Fbh1 exerts its control on recombination by acting as a Rad51 disruptase. In accord with this, overexpression of Fbh1 also suppresses the high levels of recombinant formation and Rad51 accumulation at a site-specific replication fork barrier in a strain lacking the Rad51 disruptase Srs2. Similarly overexpression of Srs2 suppresses replication fork block-induced gene conversion events in an fbh1Delta mutant, although an inability to suppress deletion events suggests that Fbh1 has a distinct functionality, which is not readily substituted by Srs2.


Assuntos
DNA Helicases/metabolismo , Replicação do DNA , Rad51 Recombinase/metabolismo , Recombinação Genética , Proteínas de Schizosaccharomyces pombe/metabolismo , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Mutagênicos/metabolismo , Rad51 Recombinase/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA