Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Astrobiology ; 21(9): 1049-1075, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34030461

RESUMO

The likelihood of finding pristine molecular biosignatures preserved in Earth's oldest rocks or on other planetary bodies is low, and new approaches are needed to assess the origins of highly altered and recalcitrant organic matter. In this study, we aim to understand the distributions and systematics of preservation of ancient polycyclic aromatic hydrocarbons (PAHs), as both free hydrocarbons and bound within insoluble macromolecules. We report the distributions of bound PAHs generated by catalytic hydropyrolysis from ancient biogenic kerogens and from insoluble organic matter (IOM) in high-temperature carbonaceous residues from pyrobitumens and synthetic coke. For biogenic kerogens, the degree of thermal maturity exerts the primary control on the preservation and distributions of the major five-ring and six-ring PAH compounds. This holds for both Precambrian and Phanerozoic rocks, thus source variation in primary biogenic organic matter inputs does not exert the major control on bound PAH. The IOM samples, predominantly residues from hydrocarbon cracking at high temperatures, preserve a bound PAH profile significantly distinct from ancient biogenic kerogens and characterized by an absence of perylene and higher abundance of large-ring condensed PAHs. Covalently bound PAH profiles offer promise as "last resort" molecular biosignatures for aiding the astrobiological search for ancient life.


Assuntos
Hidrocarbonetos Aromáticos , Hidrocarbonetos Policíclicos Aromáticos , Monitoramento Ambiental , Hidrocarbonetos , Hidrocarbonetos Policíclicos Aromáticos/análise
2.
Geobiology ; 18(6): 682-709, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32783292

RESUMO

A Jurassic negative carbon isotope excursion (CIE), co-evolved with Toarcian Oceanic Anoxic Event (OAE) at ~183 Ma, is suggested to be linked to a global carbon-cycle perturbation and is well documented for Toarcian terrestrial fossil woods and marine sediments around the globe. A theoretically coupled δ13 Ccarb -δ13 Corg pattern due to such dubbed global carbon-cycle event from the negative CIE in Dotternhausen Toarcian stratigraphic profile (southwest Germany) is unexpectedly disturbed by two-step δ13 Ccarb -δ13 Corg decoupling in which the last step, upper in the stratigraphic order, is of higher magnitude. However, the trigger(s) for these sudden decoupling disturbances are still poorly constrained. Here, connecting new carbon and oxygen isotope data with documentary lipid biomarkers shows that the global carbon cycle during the Toarcian OAE was disturbed by enhanced green sulfur bacteria (GSB) metabolisms and early diagenesis at local scales. The first step δ13 Ccarb -δ13 Corg decoupling was induced in the initial stage of the GSB bloom. The second step of much larger δ13 Ccarb -δ13 Corg decoupling arising from a GSB prosperity was, however, exaggerated by early diagenesis through the respiration of sulfate-reducing bacteria (SRB). Paleo-geographically distinct localities of the Tethys region show contrasting decoupled δ13 Ccarb -δ13 Corg patterns, which implies that the second-order carbon-cycle perturbations have pervasively and independently impacted the global carbon event during the Toarcian OAE.


Assuntos
Ciclo do Carbono , Isótopos de Carbono , Sedimentos Geológicos , Carbono/análise , Isótopos de Carbono/análise , Alemanha , Oceanos e Mares
3.
Proc Natl Acad Sci U S A ; 116(14): 6647-6652, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30894492

RESUMO

The Archean Eon was a time of predominantly anoxic Earth surface conditions, where anaerobic processes controlled bioessential element cycles. In contrast to "oxygen oases" well documented for the Neoarchean [2.8 to 2.5 billion years ago (Ga)], the magnitude, spatial extent, and underlying causes of possible Mesoarchean (3.2 to 2.8 Ga) surface-ocean oxygenation remain controversial. Here, we report δ15N and δ13C values coupled with local seawater redox data for Mesoarchean shales of the Mozaan Group (Pongola Supergroup, South Africa) that were deposited during an episode of enhanced Mn (oxyhydr)oxide precipitation between ∼2.95 and 2.85 Ga. Iron and Mn redox systematics are consistent with an oxygen oasis in the Mesoarchean anoxic ocean, but δ15N data indicate a Mo-based diazotrophic biosphere with no compelling evidence for a significant aerobic nitrogen cycle. We propose that in contrast to the Neoarchean, dissolved O2 levels were either too low or too limited in extent to develop a large and stable nitrate reservoir in the Mesoarchean ocean. Since biological N2 fixation was evidently active in this environment, the growth and proliferation of O2-producing organisms were likely suppressed by nutrients other than nitrogen (e.g., phosphorus), which would have limited the expansion of oxygenated conditions during the Mesoarchean.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...