Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 31(2): 3249-3257, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36785321

RESUMO

We present a fully bonded, misalignment-free, diode-pumped Yb:ceramic (Yb:Y2O3) oscillator producing 190-fs pulses at a repetition frequency of 2.185 GHz. Self-starting Kerr-lens-modelocked operation was obtained from both outputs of the ring cavity with an average combined output power of 14-30 mW for pump powers from 380-670 mW. The fully bonded design provided self-starting, turnkey operation, with a relative intensity noise of 0.025% from 1 Hz-1 MHz. Tuning of the pulse repetition rate over a 120 kHz range was demonstrated for a 2°C change in temperature. Chirped-pulse amplification in a semiconductor optical amplifier was shown to increase the pulse average power to 69 mW and the pulse energy (peak power) from 2.5 pJ (12 W) to 32 pJ (71 W).

2.
Opt Express ; 30(22): 39624-39630, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36298909

RESUMO

We present a Kerr-lens-modelocked, three-element, diode-pumped Ti:sapphire laser producing 111-fs pulses at a repetition frequency of 1.02 GHz. Self-starting soliton-modelocked operation with an output power of 106 mW was obtained when the laser was pumped at 1.0 W with a single 527-nm laser diode. The output exhibits a relative intensity noise of 0.06% (1 Hz - 1 MHz) and locking of the repetition rate to an external reference is demonstrated with a phase error of 1.7 mrad (1 Hz-1 MHz). The simplicity of the laser makes it an attractive candidate as a module for integration into larger systems.

3.
Opt Lett ; 46(21): 5429-5432, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34724493

RESUMO

We report a 1.5-GHz Kerr-lens mode-locked (KLM) Yb:Y2O3 ring laser constructed by directly bonding the cavity components onto an aluminum baseplate. Stable unidirectional operation with an output power ≥10mW was obtained for pump-diode currents of 300-500 mA, corresponding to a total electrical power consumption of 1.5 W. After repetition rate stabilization, a comparison with a conventionally constructed identical laser showed a 50% reduction in phase noise. In free-running operation the bonded laser showed superior passive repetition rate stability. The bonding process follows an already proven integration approach in space-borne instrumentation, mapping a development pathway for KLM lasers in aerospace applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...