Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 619
Filtrar
1.
One Health Outlook ; 6(1): 5, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38561784

RESUMO

The European Scientific Working Group on Influenza (ESWI) held the 9th ESWI Influenza Conference in Valencia from 17-20 September 2023. Here we provide a summary of twelve key presentations, covering major topics on influenza virus, respiratory syncytial virus (RSV) and SARS coronavirus 2 (SARS-CoV-2) including: infection processes beyond acute respiratory disease, long COVID, vaccines against influenza and RSV, the implications of the potential extinction of influenza B virus Yamagata lineage, and the threats posed by zoonotic highly pathogenic avian influenza viruses.

3.
Nat Commun ; 15(1): 2319, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485931

RESUMO

Monoclonal antibodies are an increasingly important tool for prophylaxis and treatment of acute virus infections like SARS-CoV-2 infection. However, their use is often restricted due to the time required for development, variable yields and high production costs, as well as the need for adaptation to newly emerging virus variants. Here we use the genetically modified filamentous fungus expression system Thermothelomyces heterothallica (C1), which has a naturally high biosynthesis capacity for secretory enzymes and other proteins, to produce a human monoclonal IgG1 antibody (HuMab 87G7) that neutralises the SARS-CoV-2 variants of concern (VOCs) Alpha, Beta, Gamma, Delta, and Omicron. Both the mammalian cell and C1 produced HuMab 87G7 broadly neutralise SARS-CoV-2 VOCs in vitro and also provide protection against VOC Omicron in hamsters. The C1 produced HuMab 87G7 is also able to protect against the Delta VOC in non-human primates. In summary, these findings show that the C1 expression system is a promising technology platform for the development of HuMabs in preventive and therapeutic medicine.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Cricetinae , Humanos , SARS-CoV-2/genética , COVID-19/prevenção & controle , Primatas , Imunoglobulina G , Anticorpos Monoclonais , Fungos , Anticorpos Neutralizantes , Glicoproteína da Espícula de Coronavírus , Anticorpos Antivirais , Mamíferos
4.
Animals (Basel) ; 14(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38254416

RESUMO

An adult male Bell's hinge-back tortoise (Kinixys belliana) was admitted to a veterinary clinic due to a swelling in the oral cavity. Physical examination revealed an approximately 2.5 × 1.5 cm sized, irregularly shaped tissue mass with villiform projections extending from its surface located in the oropharyngeal cavity. An initial biopsy was performed, and the lesion was diagnosed as squamous papilloma. Swabs taken for virological examination tested negative with specific PCRs for papillomavirus and herpesvirus. Further analysis of the oropharyngeal mass via metagenomic sequencing revealed sequence reads corresponding to a member of the family Adintoviridae. The tissue mass was removed one week after the initial examination. The oral cavity remained unsuspicious in follow-up examinations performed after one, five and twenty weeks. However, a regrowth of the tissue was determined 23 months after the initial presentation. The resampled biopsy tested negative for sequence reads of Adintoviridae. Conclusively, this report presents the diagnostic testing and therapy of an oral cavity lesion of unknown origin. The significance of concurrent metagenomic determination of adintovirus sequence reads within the tissue lesion is discussed.

5.
Vaccines (Basel) ; 12(1)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38276677

RESUMO

Tick-borne encephalitis (TBE) is a serious neurological disease caused by TBE virus (TBEV). Because antiviral treatment options are not available, vaccination is the key prophylactic measure against TBEV infections. Despite the availability of effective vaccines, cases of vaccination breakthrough infections have been reported. The multienzymatic non-structural protein 3 (NS3) of orthoflaviviruses plays an important role in polyprotein processing and virus replication. In the present study, we evaluated NS3 of TBEV as a potential vaccine target for the induction of protective immunity. To this end, a recombinant modified vaccinia virus Ankara that drives the expression of the TBEV NS3 gene (MVA-NS3) was constructed. MVA-NS3 was used to immunize C57BL/6 mice. It induced NS3-specific immune responses, in particular T cell responses, especially against the helicase domain of NS3. However, MVA-NS3-immunized mice were not protected from subsequent challenge infection with a lethal dose of the TBEV strain Neudoerfl, indicating that in contrast to immunity to prME and NS1, NS3-specific immunity is not an independent correlate of protection against TBEV in this mouse model.

6.
Sci Total Environ ; 914: 169817, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38184244

RESUMO

An unusual mass mortality event (MME) of harbour seals (Phoca vitulina) and harbour porpoises (Phocoena phocoena) occurred in Denmark and Sweden in June 2007. Prior to this incident, the region had experienced two MMEs in harbour seals caused by Phocine Distemper Virus (PDV) in 1988 and 2002. Although epidemiology and symptoms of the 2007 MME resembled PDV, none of the animals examined for PDV tested positive. Thus, it has been speculated that another - yet unknown - pathogen caused the June 2007 MME. To shed new light on the likely cause of death, we combine previously unpublished veterinary examinations of harbour seals with novel analyses of algal toxins and algal monitoring data. All harbour seals subject to pathological examination showed pneumonia, but were negative for PDV, influenza and coronavirus. Histological analyses revealed septicaemia in multiple animals, and six animals tested positive for Klebsiella pneumonia. Furthermore, we detected the algal Dinophysis toxin DTX-1b (1-115 ng g-1) in five seals subject to toxicology, representing the first time DTX-1b has been detected in marine vertebrates. However, no animals tested positive for both Klebsiella and toxins. Thus, while our relatively small sample size prevent firm conclusions on causative agents, we speculate that the unexplained MME may have been caused by a chance incidence of multiple pathogens acting in parallel in June 2007, including Dinophysis toxin and Klebsiella. Our study illustrates the complexity of wildlife MMEs and highlights the need for thorough sampling during and after MMEs, as well as additional research on and monitoring of DTX-1b and other algal toxins in the region.


Assuntos
Endrin/análogos & derivados , Infecções por Klebsiella , Phoca , Phocoena , Pneumonia , Animais , Suécia/epidemiologia , Vírus da Cinomose Focina , Dinamarca/epidemiologia
7.
Viruses ; 15(10)2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37896776

RESUMO

Respiratory syncytial virus (RSV) infections are a constant public health problem, especially in infants and older adults. Virtually all children will have been infected with RSV by the age of two, and reinfections are common throughout life. Since antigenic variation, which is frequently observed among other respiratory viruses such as SARS-CoV-2 or influenza viruses, can only be observed for RSV to a limited extent, reinfections may result from short-term or incomplete immunity. After decades of research, two RSV vaccines were approved to prevent lower respiratory tract infections in older adults. Recently, the FDA approved a vaccine for active vaccination of pregnant women to prevent severe RSV disease in infants during their first RSV season. This review focuses on the host response to RSV infections mediated by epithelial cells as the first physical barrier, followed by responses of the innate and adaptive immune systems. We address possible RSV-mediated immunomodulatory and pathogenic mechanisms during infections and discuss the current vaccine candidates and alternative treatment options.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano , Vacinas , Lactente , Criança , Feminino , Gravidez , Humanos , Idoso , Reinfecção , Vírus Sinciciais Respiratórios , Imunidade
8.
Pathogens ; 12(9)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37764982

RESUMO

Rift Valley Fever Virus is a mosquito-borne phlebovirus causing febrile or haemorrhagic illness in ruminants and humans. The virus can prevent the induction of the antiviral interferon response through its NSs proteins. Mutations in the NSs gene may allow the induction of innate proinflammatory immune responses and lead to attenuation of the virus. Upon infection, virus-specific antibodies and T cells are induced that may afford protection against subsequent infections. Thus, all arms of the adaptive immune system contribute to prevention of disease progression. These findings will aid the design of vaccines using the currently available platforms. Vaccine candidates have shown promise in safety and efficacy trials in susceptible animal species and these may contribute to the control of RVFV infections and prevention of disease progression in humans and ruminants.

9.
Emerg Microbes Infect ; 12(2): e2257810, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37682060

RESUMO

ABSTRACTRecent reports documenting sporadic infections in carnivorous mammals worldwide with highly pathogenic avian influenza virus (HPAIV) H5N1 clade 2.3.4.4b have raised concerns about the potential risk of adaptation to sustained transmission in mammals, including humans. We report H5N1 clade 2.3.4.4b infection of two grey seals (Halichoerus grypus) from coastal waters of The Netherlands and Germany in December 2022 and February 2023, respectively. Histological and immunohistochemical investigations showed in both animals a non-suppurative and necrotising encephalitis with viral antigen restricted to the neuroparenchyma. Whole genome sequencing showed the presence of HPAIV H5N1 clade 2.3.4.4b strains in brain tissue, which were closely related to sympatric avian influenza viruses. Viral RNA was also detected in the lung of the seal from Germany by real-time quantitative PCR. No other organs tested positive. The mammalian adaptation PB2-E627K mutation was identified in approximately 40% of the virus population present in the brain tissue of the German seal. Retrospective screening for nucleoprotein-specific antibodies, of sera collected from 251 seals sampled in this region from 2020 to 2023, did not show evidence of influenza A virus-specific antibodies. Similarly, screening by reverse transcription PCR of tissues of 101 seals that had died along the Dutch coast in the period 2020-2021, did not show evidence of influenza virus infection. Collectively, these results indicate that individual seals are sporadically infected with HPAIV-H5N1 clade 2.3.4.4b, resulting in an encephalitis in the absence of a systemic infection, and with no evidence thus far of onward spread between seals.


Assuntos
Encefalite , Virus da Influenza A Subtipo H5N1 , Infecções por Orthomyxoviridae , Focas Verdadeiras , Animais , Virus da Influenza A Subtipo H5N1/genética , Estudos Retrospectivos
10.
J Travel Med ; 30(5)2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37535890

RESUMO

RATIONALE FOR REVIEW: This review aims to summarize the transmission patterns of influenza, its seasonality in different parts of the globe, air travel- and cruise ship-related influenza infections and interventions to reduce transmission. KEY FINDINGS: The seasonality of influenza varies globally, with peak periods occurring mainly between October and April in the northern hemisphere (NH) and between April and October in the southern hemisphere (SH) in temperate climate zones. However, influenza seasonality is significantly more variable in the tropics. Influenza is one of the most common travel-related, vaccine-preventable diseases and can be contracted during travel, such as during a cruise or through air travel. Additionally, travellers can come into contact with people from regions with ongoing influenza transmission. Current influenza immunization schedules in the NH and SH leave individuals susceptible during their respective spring and summer months if they travel to the other hemisphere during that time. CONCLUSIONS/RECOMMENDATIONS: The differences in influenza seasonality between hemispheres have substantial implications for the effectiveness of influenza vaccination of travellers. Health care providers should be aware of influenza activity when patients report travel plans, and they should provide alerts and advise on prevention, diagnostic and treatment options. To mitigate the risk of travel-related influenza, interventions include antivirals for self-treatment (in combination with the use of rapid self-tests), extending the shelf life of influenza vaccines to enable immunization during the summer months for international travellers and allowing access to the influenza vaccine used in the opposite hemisphere as a travel-related vaccine. With the currently available vaccines, the most important preventive measure involves optimizing the seasonal influenza vaccination. It is also imperative that influenza is recognized as a travel-related illness among both travellers and health care professionals.


Assuntos
Viagem Aérea , Vacinas contra Influenza , Influenza Humana , Humanos , Influenza Humana/prevenção & controle , Vacinação , Esquemas de Imunização , Doença Relacionada a Viagens , Estações do Ano
11.
Front Vet Sci ; 10: 1251018, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37645675

RESUMO

The Eurasian lynx (Lynx lynx) represents an endangered species with only small populations remaining in Central Europe. Knowledge about the threat posed by potential infectious agents to these animals is crucial for informing ongoing protection measures. Canine distemper virus (CDV) is known to have a wide host range with infection reported in many mammalian species including several lynx species (Lynx pardinus, Lynx canadensis, Lynx rufus), but is an extremely rare finding in the Eurasian lynx. The present report describes a case of a Eurasian lynx showing central nervous signs, including apathy and ataxia. A CT scan revealed multiple hypodense areas in different localizations within the brain as well as enlarged liquid filled areas, leading to the suspicion of a degenerative process. Due to clinical deterioration, the animal was euthanized and submitted for macroscopical and histological investigations. Histological investigations revealed multifocal demyelinations in the cerebellum, brain stem and cervical spinal cord as well as a multifocal, perivascular, lymphohistiocytic meningoencephalitis. A CDV infection was confirmed by immunohistochemistry and RT-PCR analyses. This CDV infection of a Eurasian lynx resembles a classical chronic manifestation of distemper in dogs and highlights the threat posed by canine distemper to this species.

12.
Front Immunol ; 14: 1177324, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37483628

RESUMO

Introduction: Tick-borne encephalitis virus (TBEV) is one of the most relevant tick-transmitted neurotropic arboviruses in Europe and Asia and the causative agent of tick-borne encephalitis (TBE). Annually more than 10,000 TBE cases are reported despite having vaccines available. In Europe, the vaccines FSME-IMMUN® and Encepur® based on formaldehyde-inactivated whole viruses are licensed. However, demanding vaccination schedules contribute to sub-optimal vaccination uptake and breakthrough infections have been reported repeatedly. Due to its immunogenic properties as well as its role in viral replication and disease pathogenesis, the non-structural protein 1 (NS1) of flaviviruses has become of interest for non-virion based flavivirus vaccine candidates in recent years. Methods: Therefore, immunogenicity and protective efficacy of TBEV NS1 expressed by neuraminidase (NA)-deficient Influenza A virus (IAV) or Modified Vaccinia virus Ankara (MVA) vectors were investigated in this study. Results: With these recombinant viral vectors TBEV NS1-specific antibody and T cell responses were induced. Upon heterologous prime/boost regimens partial protection against lethal TBEV challenge infection was afforded in mice. Discussion: This supports the inclusion of NS1 as a vaccine component in next generation TBEV vaccines.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Vacinas contra Influenza , Influenza Humana , Orthomyxoviridae , Animais , Camundongos , Humanos , Vaccinia virus , Anticorpos Antivirais , Influenza Humana/prevenção & controle , Imunidade Celular
13.
Front Immunol ; 14: 1204834, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37359531

RESUMO

Introduction: The emergency use of vaccines has been the most efficient way to control the coronavirus disease 19 (COVID-19) pandemic. However, the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern has reduced the efficacy of currently used vaccines. The receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) protein is the main target for virus neutralizing (VN) antibodies. Methods: A SARS-CoV-2 RBD vaccine candidate was produced in the Thermothelomyces heterothallica (formerly, Myceliophthora thermophila) C1 protein expression system and coupled to a nanoparticle. Immunogenicity and efficacy of this vaccine candidate was tested using the Syrian golden hamster (Mesocricetus auratus) infection model. Results: One dose of 10-µg RBD vaccine based on SARS-CoV-2 Wuhan strain, coupled to a nanoparticle in combination with aluminum hydroxide as adjuvant, efficiently induced VN antibodies and reduced viral load and lung damage upon SARS-CoV-2 challenge infection. The VN antibodies neutralized SARS-CoV-2 variants of concern: D614G, Alpha, Beta, Gamma, and Delta. Discussion: Our results support the use of the Thermothelomyces heterothallica C1 protein expression system to produce recombinant vaccines against SARS-CoV-2 and other virus infections to help overcome limitations associated with the use of mammalian expression system.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Animais , Cricetinae , Humanos , COVID-19/prevenção & controle , SARS-CoV-2/genética , Adjuvantes Imunológicos , Anticorpos Bloqueadores , Fungos , Mesocricetus
14.
Front Immunol ; 14: 1182963, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153588

RESUMO

Introduction: Tick-borne encephalitis virus (TBEV) is an important human pathogen that can cause a serious disease involving the central nervous system (tick-borne encephalitis, TBE). Although approved inactivated vaccines are available, the number of TBE cases is rising, and breakthrough infections in fully vaccinated subjects have been reported in recent years. Methods: In the present study, we generated and characterized a recombinant Modified Vaccinia virus Ankara (MVA) for the delivery of the pre-membrane (prM) and envelope (E) proteins of TBEV (MVA-prME). Results: MVA-prME was tested in mice in comparison with a licensed vaccine FSME-IMMUN® and proved to be highly immunogenic and afforded full protection against challenge infection with TBEV. Discussion: Our data indicate that MVA-prME holds promise as an improved next-generation vaccine for the prevention of TBE.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Vacinas Virais , Humanos , Animais , Camundongos , Vírus da Encefalite Transmitidos por Carrapatos/genética , Anticorpos Neutralizantes , Anticorpos Antivirais , Vaccinia virus/genética
15.
Front Immunol ; 14: 1162342, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37256125

RESUMO

Monoclonal antibodies (mABs) are safe and effective proteins produced in laboratory that may be used to target a single epitope of a highly conserved protein of a virus or a bacterial pathogen. For this purpose, the epitope is selected among those that play the major role as targets for prevention of infection or tissue damage. In this paper, characteristics of the most important mABs that have been licensed and used or are in advanced stages of development for use in prophylaxis and therapy of infectious diseases are discussed. We showed that a great number of mABs effective against virus or bacterial infections have been developed, although only in a small number of cases these are licensed for use in clinical practice and have reached the market. Although some examples of therapeutic efficacy have been shown, not unlike more traditional antiviral or antibacterial treatments, their efficacy is significantly greater in prophylaxis or early post-exposure treatment. Although in many cases the use of vaccines is more effective and cost-effective than that of mABs, for many infectious diseases no vaccines have yet been developed and licensed. Furthermore, in emergency situations, like in epidemics or pandemics, the availability of mABs can be an attractive adjunct to our armament to reduce the impact. Finally, the availability of mABs against bacteria can be an important alternative, when multidrug-resistant strains are involved.


Assuntos
Infecções Bacterianas , COVID-19 , Doenças Transmissíveis , Vacina Antirrábica , Raiva , Vírus Sincicial Respiratório Humano , Humanos , Anticorpos Monoclonais/uso terapêutico , SARS-CoV-2 , HIV , Anticorpos Antivirais/uso terapêutico , Epitopos , Infecções Bacterianas/tratamento farmacológico , Doenças Transmissíveis/tratamento farmacológico
16.
Viruses ; 15(5)2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37243173

RESUMO

Skunk amdoparvovirus (Carnivore amdoparvovirus 4, SKAV) is closely related to Aleutian mink disease virus (AMDV) and circulates primarily in striped skunks (Mephitis mephitis) in North America. SKAV poses a threat to mustelid species due to reported isolated infections of captive American mink (Neovison vison) in British Columbia, Canada. We detected SKAV in a captive striped skunk in a German zoo by metagenomic sequencing. The pathological findings are dominated by lymphoplasmacellular inflammation and reveal similarities to its relative Carnivore amdoparvovirus 1, the causative agent of Aleutian mink disease. Phylogenetic analysis of the whole genome demonstrated 94.80% nucleotide sequence identity to a sequence from Ontario, Canada. This study is the first case description of a SKAV infection outside of North America.


Assuntos
Doença Aleutiana do Vison , Mephitidae , Animais , Colúmbia Britânica , Europa (Continente)/epidemiologia , Vison , Filogenia
17.
J Virol Methods ; 317: 114733, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37068591

RESUMO

ß-Propiolactone (BPL) is an organic compound widely used as an inactivating agent in vaccine development and production, for example for SARS-CoV, SARS-CoV-2 and Influenza viruses. Inactivation of pathogens by BPL is based on an irreversible alkylation of nucleic acids but also on acetylation and cross-linking between proteins, DNA or RNA. However, the protocols for BPL inactivation of viruses vary widely. Handling of infectious, enriched SARS-CoV-2 specimens and diagnostic samples from COVID-19 patients is recommended in biosafety level (BSL)- 3 or BSL-2 laboratories, respectively. We validated BPL inactivation of SARS-CoV-2 in saliva samples with the objective to use saliva from COVID-19 patients for training of scent dogs for the detection of SARS-CoV-2 positive individuals. Therefore, saliva samples and cell culture medium buffered with NaHCO3 (pH 8.3) were comparatively spiked with SARS-CoV-2 and inactivated with 0.1 % BPL for 1 h (h) or 71 h ( ± 1 h) at 2-8 °C, followed by hydrolysis of BPL at 37 °C for 1 or 2 h, converting BPL into non-toxic beta-hydroxy-propionic acid. SARS-CoV-2 inactivation was demonstrated by a titre reduction of up to 10^4 TCID50/ml in the spiked samples for both inactivation periods using virus titration and virus isolation, respectively. The validated method was confirmed by successful inactivation of pathogens in saliva samples from COVID-19 patients. Furthermore, we reviewed the currently available literature on SARS-CoV-2 inactivation by BPL. Accordingly, BPL-inactivated, hydrolysed samples can be handled in a non-laboratory setting. Furthermore, our BPL inactivation protocols can be adapted to validation experiments with other pathogens.


Assuntos
COVID-19 , Vírus , Cães , Animais , Propiolactona , Saliva , Odorantes , COVID-19/diagnóstico , Inativação de Vírus , SARS-CoV-2
18.
Viruses ; 15(4)2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37112886

RESUMO

In poultry, several respiratory viral infections lead to a drop in egg production associated with high economic losses. While the virus-host interactions at the respiratory epithelium are well studied, less is known about these interactions in the oviduct. To investigate possible differences between virus infections at these epithelial structures, we compared the interactions of two important poultry viruses on turkey organ cultures. Two members of the order Mononegavirales, the Avian Metapneumovirus (AMPV) and the Newcastle disease virus (NDV), were selected to conduct the in vitro experiments since these viruses can infect both the trachea and oviduct. In addition, we used different strains of these viruses, a subtype A and a subtype B strain for AMPV and the NDV strains Komarow and Herts'33, to detect possible differences not only between the tissues but also between different viral strains. Turkey tracheal and oviduct organ cultures (TOC and OOC) were prepared to investigate viral replication, antigen localisation, lesion development, and the expression pattern of interferon-λ and importin-α isoforms. All viruses replicated more efficiently in the oviduct than in the tracheal epithelium (p < 0.05). In addition, we observed higher expression levels of both, IFN-λ and importin-α in OOCs compared to TOCs. Our results indicated strain-dependent differences, with the AMPV-B- and Herts'33 strains being more virulent in organ cultures than the AMPV-A- and Komarow strains, based on the higher viral genome loads, more severe histological lesions, and higher upregulation of IFN-λ. Overall, our findings reveal tissue- and virus strain-dependent differences, which may have consequences for disease development in the host tissue and, subsequently, possible treatment strategies.


Assuntos
Metapneumovirus , Doença de Newcastle , Infecções por Paramyxoviridae , Doenças das Aves Domésticas , Animais , Vírus da Doença de Newcastle , alfa Carioferinas , Perus , Interferon lambda , Galinhas
19.
Vaccine ; 41(20): 3171-3177, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37088603

RESUMO

The widespread outbreak of the monkeypox virus (MPXV) recognized in 2022 poses new challenges for public healthcare systems worldwide. With more than 86,000 people infected, there is concern that MPXV may become endemic outside of its original geographical area leading to repeated human spillover infections or continue to be spread person-to-person. Fortunately, classical public health measures (e.g., isolation, contact tracing and quarantine) and vaccination have blunted the spread of the virus, but cases are continuing to be reported in 28 countries in March 2023. We describe here the vaccines and drugs available for the prevention and treatment of MPXV infections. However, although their efficacy against monkeypox (mpox) has been established in animal models, little is known about their efficacy in the current outbreak setting. The continuing opportunity for transmission raises concerns about the potential for evolution of the virus and for expansion beyond the current risk groups. The priorities for action are clear: 1) more data on the efficacy of vaccines and drugs in infected humans must be gathered; 2) global collaborations are necessary to ensure that government authorities work with the private sector in developed and low and middle income countries (LMICs) to provide the availability of treatments and vaccines, especially in historically endemic/enzootic areas; 3) diagnostic and surveillance capacity must be increased to identify areas and populations where the virus is present and may seed resurgence; 4) those at high risk of severe outcomes (e.g., immunocompromised, untreated HIV, pregnant women, and inflammatory skin conditions) must be informed of the risk of infection and be protected from community transmission of MPXV; 5) engagement with the hardest hit communities in a non-stigmatizing way is needed to increase the understanding and acceptance of public health measures; and 6) repositories of monkeypox clinical samples, including blood, fluids, tissues and lesion material must be established for researchers. This MPXV outbreak is a warning that pandemic preparedness plans need additional coordination and resources. We must prepare for continuing transmission, resurgence, and repeated spillovers of MPXV.


Assuntos
Mpox , Vacinas , Gravidez , Animais , Humanos , Feminino , Mpox/epidemiologia , Mpox/prevenção & controle , Monkeypox virus , Vacinação , Surtos de Doenças/prevenção & controle
20.
Front Immunol ; 14: 1134371, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36926332

RESUMO

Introduction: Naturally attenuated Langat virus (LGTV) and highly pathogenic tick-borne encephalitis virus (TBEV) share antigenically similar viral proteins and are grouped together in the same flavivirus serocomplex. In the early 1970s, this has encouraged the usage of LGTV as a potential live attenuated vaccine against tick-borne encephalitis (TBE) until cases of encephalitis were reported among vaccinees. Previously, we have shown in a mouse model that immunity induced against LGTV protects mice against lethal TBEV challenge infection. However, the immune correlates of this protection have not been studied. Methods: We used the strategy of adoptive transfer of either serum or T cells from LGTV infected mice into naïve recipient mice and challenged them with lethal dose of TBEV. Results: We show that mouse infection with LGTV induced both cross-reactive antibodies and T cells against TBEV. To identify correlates of protection, Monitoring the disease progression in these mice for 16 days post infection, showed that serum from LGTV infected mice efficiently protected from developing severe disease. On the other hand, adoptive transfer of T cells from LGTV infected mice failed to provide protection. Histopathological investigation of infected brains suggested a possible role of microglia and T cells in inflammatory processes within the brain. Discussion: Our data provide key information regarding the immune correlates of protection induced by LGTV infection of mice which may help design better vaccines against TBEV.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Infecções por Flavivirus , Camundongos , Animais , Anticorpos , Encéfalo , Vacinas Atenuadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...