Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(10)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38786048

RESUMO

Androglobin (ADGB) is a highly conserved and recently identified member of the globin superfamily. Although previous studies revealed a link to ciliogenesis and an involvement in murine spermatogenesis, its physiological function remains mostly unknown. Apart from FOXJ1-dependent regulation, the transcriptional landscape of the ADGB gene remains unexplored. We, therefore, aimed to obtain further insights into regulatory mechanisms governing ADGB expression. To this end, changes in ADGB promoter activity were examined using luciferase reporter gene assays in the presence of a set of more than 475 different exogenous transcription factors. MYBL2 and PITX2 resulted in the most pronounced increase in ADGB promoter-dependent luciferase activity. Subsequent truncation strategies of the ADGB promoter fragment narrowed down the potential MYBL2 and PITX2 binding sites within the proximal ADGB promoter. Furthermore, MYBL2 binding sites on the ADGB promoter were further validated via a guide RNA-mediated interference strategy using reporter assays. Chromatin immunoprecipitation (ChIP)-qPCR experiments illustrated enrichment of the endogenous ADGB promoter region upon MYBL2 and PITX2 overexpression. Consistently, ectopic MYBL2 expression induced endogenous ADGB mRNA levels. Collectively, our data indicate that ADGB is strongly regulated at the transcriptional level and might have functions beyond ciliogenesis.


Assuntos
Regulação da Expressão Gênica , Regiões Promotoras Genéticas , Fatores de Transcrição , Regiões Promotoras Genéticas/genética , Humanos , Sítios de Ligação , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Animais , Proteína Homeobox PITX2 , Globinas/genética , Globinas/metabolismo , Expressão Ectópica do Gene , Camundongos , Ligação Proteica
2.
BMC Neurosci ; 23(1): 59, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36243678

RESUMO

BACKGROUND: The hooded seal (Cystophora cristata) exhibits impressive diving skills and can tolerate extended durations of asphyxia, hypoxia and oxidative stress, without suffering from irreversible neuronal damage. Thus, when exposed to hypoxia in vitro, neurons of fresh cortical and hippocampal tissue from hooded seals maintained their membrane potential 4-5 times longer than neurons of mice. We aimed to identify the molecular mechanisms underlying the intrinsic neuronal hypoxia tolerance. Previous comparative transcriptomics of the visual cortex have revealed that S100B and clusterin (apolipoprotein J), two stress proteins that are involved in neurological disorders characterized by hypoxic conditions, have a remarkably high expression in hooded seals compared to ferrets. When overexpressed in murine neuronal cells (HN33), S100B and clusterin had neuroprotective effects when cells were exposed to hypoxia. However, their specific roles in hypoxia have remained largely unknown. METHODS: In order to shed light on potential molecular pathways or interaction partners, we exposed HN33 cells transfected with either S100B, soluble clusterin (sCLU) or nuclear clusterin (nCLU) to normoxia, hypoxia and oxidative stress for 24 h. We then determined cell viability and compared the transcriptomes of transfected cells to control cells. Potential pathways and upstream regulators were identified via Gene Ontology (GO) and Ingenuity Pathway Analysis (IPA). RESULTS: HN33 cells transfected with sCLU and S100B demonstrated improved glycolytic capacity and reduced aerobic respiration at normoxic conditions. Additionally, sCLU appeared to enhance pathways for cellular homeostasis to counteract stress-induced aggregation of proteins. S100B-transfected cells sustained lowered energy-intensive synaptic signaling. In response to hypoxia, hypoxia-inducible factor (HIF) pathways were considerably elevated in nCLU- and sCLU-transfected cells. In a previous study, S100B and sCLU decreased the amount of reactive oxygen species and lipid peroxidation in HN33 cells in response to oxidative stress, but in the present study, these functional effects were not mirrored in gene expression changes. CONCLUSIONS: sCLU and S100B overexpression increased neuronal survival by decreasing aerobic metabolism and synaptic signaling in advance to hypoxia and oxidative stress conditions, possibly to reduce energy expenditure and the build-up of deleterious reactive oxygen species (ROS). Thus, a high expression of CLU isoforms and S100B is likely beneficial during hypoxic conditions.


Assuntos
Fármacos Neuroprotetores , Focas Verdadeiras , Animais , Encéfalo/metabolismo , Clusterina/genética , Furões/genética , Furões/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Hipóxia , Camundongos , Neurônios/metabolismo , Estresse Oxidativo , Isoformas de Proteínas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100/genética , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Focas Verdadeiras/genética , Focas Verdadeiras/metabolismo , Transcriptoma
3.
Elife ; 112022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35700329

RESUMO

Spermatogenesis is a highly specialized differentiation process driven by a dynamic gene expression program and ending with the production of mature spermatozoa. Whereas hundreds of genes are known to be essential for male germline proliferation and differentiation, the contribution of several genes remains uncharacterized. The predominant expression of the latest globin family member, androglobin (Adgb), in mammalian testis tissue prompted us to assess its physiological function in spermatogenesis. Adgb knockout mice display male infertility, reduced testis weight, impaired maturation of elongating spermatids, abnormal sperm shape, and ultrastructural defects in microtubule and mitochondrial organization. Epididymal sperm from Adgb knockout animals display multiple flagellar malformations including coiled, bifid or shortened flagella, and erratic acrosomal development. Following immunoprecipitation and mass spectrometry, we could identify septin 10 (Sept10) as interactor of Adgb. The Sept10-Adgb interaction was confirmed both in vivo using testis lysates and in vitro by reciprocal co-immunoprecipitation experiments. Furthermore, the absence of Adgb leads to mislocalization of Sept10 in sperm, indicating defective manchette and sperm annulus formation. Finally, in vitro data suggest that Adgb contributes to Sept10 proteolysis in a calmodulin-dependent manner. Collectively, our results provide evidence that Adgb is essential for murine spermatogenesis and further suggest that Adgb is required for sperm head shaping via the manchette and proper flagellum formation.


Assuntos
Globinas , Infertilidade Masculina , Animais , Fertilidade , Globinas/metabolismo , Infertilidade Masculina/genética , Masculino , Mamíferos , Camundongos , Camundongos Knockout , Sêmen , Cauda do Espermatozoide , Espermátides/metabolismo , Espermatozoides , Testículo/metabolismo
4.
J Biol Chem ; 296: 100291, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33453283

RESUMO

Androglobin (ADGB) represents the latest addition to the globin superfamily in metazoans. The chimeric protein comprises a calpain domain and a unique circularly permutated globin domain. ADGB expression levels are most abundant in mammalian testis, but its cell-type-specific expression, regulation, and function have remained unexplored. Analyzing bulk and single-cell mRNA-Seq data from mammalian tissues, we found that-in addition to the testes-ADGB is prominently expressed in the female reproductive tract, lungs, and brain, specifically being associated with cell types forming motile cilia. Correlation analysis suggested coregulation of ADGB with FOXJ1, a crucial transcription factor of ciliogenesis. Investigating the transcriptional regulation of the ADGB gene, we characterized its promoter using epigenomic datasets, exogenous promoter-dependent luciferase assays, and CRISPR/dCas9-VPR-mediated activation approaches. Reporter gene assays revealed that FOXJ1 indeed substantially enhanced luciferase activity driven by the ADGB promoter. ChIP assays confirmed binding of FOXJ1 to the endogenous ADGB promoter region. We dissected the minimal sequence required for FOXJ1-dependent regulation and fine mapped the FOXJ1 binding site to two evolutionarily conserved regions within the ADGB promoter. FOXJ1 overexpression significantly increased endogenous ADGB mRNA levels in HEK293 and MCF-7 cells. Similar results were observed upon RFX2 overexpression, another key transcription factor in ciliogenesis. The complex transcriptional regulation of the ADGB locus was illustrated by identifying a distal enhancer, responsible for synergistic regulation by RFX2 and FOXJ1. Finally, cell culture studies indicated an ADGB-dependent increase in the number of ciliated cells upon overexpression of the full-length protein, confirming a ciliogenesis-associated role of ADGB in mammals.


Assuntos
Proteínas de Ligação a Calmodulina/genética , Cílios/genética , Fatores de Transcrição Forkhead/genética , Globinas/genética , Fatores de Transcrição de Fator Regulador X/genética , Transcriptoma , Animais , Sítios de Ligação , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Proteínas de Ligação a Calmodulina/metabolismo , Bovinos , Cílios/metabolismo , Elementos Facilitadores Genéticos , Feminino , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Ontologia Genética , Globinas/metabolismo , Células HEK293 , Células HeLa , Humanos , Pulmão/citologia , Pulmão/crescimento & desenvolvimento , Pulmão/metabolismo , Células MCF-7 , Masculino , Anotação de Sequência Molecular , Ovário/citologia , Ovário/crescimento & desenvolvimento , Ovário/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Fatores de Transcrição de Fator Regulador X/metabolismo , Análise de Sequência de RNA , Testículo/citologia , Testículo/crescimento & desenvolvimento , Testículo/metabolismo
5.
Front Microbiol ; 11: 1008, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32508799

RESUMO

Alzheimer's disease (AD) is the most common form of dementia. Besides its cognitive phenotype, AD leads to crucial changes in gut microbiome composition in model mice and in patients, but the reported data are still highly inconsistent. Therefore, we investigated chronic effects of AD-characteristic neurotoxic amyloid-ß (Aß) peptides as provided by transgenic overexpression (5xFAD mouse model) and acute effects due to oral application of Aß on gut microbes. Astonishingly, one-time feeding of wild type mice with Aß42 provoked immediate changes in gut microbiome composition (ß diversity) as compared to controls. Such obvious changes were not observed when comparing 5xFAD mice with wild type littermates. However, acute as well as chronic exposure to Aß significantly affected the abundance of numerous individual operational taxonomic units. This provides first evidence that acute in vivo exposure to Aß results in a shift in the enteric microbiome. Furthermore, we suggest that chronic exposure to Aß might trigger an adaptive response of gut microbiota which could thereby result in dysbiosis in model mice but also in human patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...