Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 230: 118027, 2020 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-31986429

RESUMO

Dissolved organic matter (DOM) is an omnipresent constituent of natural water bodies. Reuse and transformation of DOM compounds in the water column is driven by physicochemical and biological processes leading to the production of refractory DOM. Typically, breakdown of DOM chemical compounds into smaller or more condensed fragments is triggered by ultraviolet (UV) radiation. Here, we present a study on the photodegradation of DOM produced during an incubation experiment with a natural microbial community. At the end of the first incubation without UV irradiation, the samples from 3 mesocosms were filtered to remove microbes and particles and continuously exposed to UV radiation (280-365 nm). We investigated DOM in depth via monitoring of dissolved organic carbon (DOC) concentrations, DOM molecular characterization by Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) and excitation emission matrix spectroscopy (EEMS). Analysis of variance indicated no significant differences in the DOC concentration between treatments. Main peaks in the fluorescent DOM (FDOM) were photo-bleached by UV radiation, and an increase in the fluorescent intensity of selected peaks was observed on irradiated samples toward the end of the experiment. Parallel factor analysis (PARAFAC) indicated the presence of three main components in all treatments: C1 (Marine humic M), C2 (Bacterial produced humic C), C3 (Tyrosine), and an additional component in the dark incubation of mesocosm 3, C4 (Tryptophan). Despite an intensive filtration protocol through 0.7, 0.2 and 0.1 µm filters, low bacterial abundances were determined (<2.5 × 10-3 cells mL-1). We observed a direct correlation between structural indices and the intensity of PARAFAC components. Average double bond equivalent and aromaticity were strongly positively correlated with PARAFAC components C1 and C2 for one or more mesocosm. Moreover, FT-ICR-MS showed that under the tested conditions, the refractory character of the DOM assessed as the similarity to a deep ocean DOM reference did not increase on molecular level. Thus, mechanisms other than photochemical transformations of relatively recent DOM are likely necessary to facilitate long-term stability of DOM in the oceans.

2.
Nat Commun ; 9(1): 1801, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29728566

RESUMO

Freshwater ecosystems are a major source of methane (CH4), contributing 0.65 Pg (in CO2 equivalents) yr-1 towards global carbon emissions and offsetting ~25% of the terrestrial carbon sink. Most freshwater CH4 emissions come from littoral sediments, where large quantities of plant material are decomposed. Climate change is predicted to shift plant community composition, and thus change the quality of inputs into detrital food webs, with the potential to affect CH4 production. Here we find that variation in phenol availability from decomposing organic matter underlies large differences in CH4 production in lake sediments. Production is at least 400-times higher from sediments composed of macrophyte litter compared to terrestrial sources because of inhibition of methanogenesis by phenol leachates. Our results now suggest that earth system models and carbon budgets should consider the effects of plant communities on sediment chemistry and ultimately CH4 emissions at a global scale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA