Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Genet ; 115(3): 221-9, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15232732

RESUMO

Genetic, ethnographic, and historical evidence suggests that the Hindu castes have been highly endogamous for several thousand years and that, when movement between castes does occur, it typically consists of females joining castes of higher social status. However, little is known about migration rates in these populations or the extent to which migration occurs between caste groups of low, middle, and high social status. To investigate these aspects of migration, we analyzed the largest collection of genetic markers collected to date in Hindu caste populations. These data included 45 newly typed autosomal short tandem repeat polymorphisms (STRPs), 411 bp of mitochondrial DNA sequence, and 43 Y-chromosomal single-nucleotide polymorphisms that were assayed in more than 200 individuals of known caste status sampled in Andrah Pradesh, in South India. Application of recently developed likelihood-based analyses to this dataset enabled us to obtain genetically derived estimates of intercaste migration rates. STRPs indicated migration rates of 1-2% per generation between high-, middle-, and low-status caste groups. We also found support for the hypothesis that rates of gene flow differ between maternally and paternally inherited genes. Migration rates were substantially higher in maternally than in paternally inherited markers. In addition, while prevailing patterns of migration involved movement between castes of similar rank, paternally inherited markers in the low-status castes were most likely to move into high-status castes. Our findings support earlier evidence that the caste system has been a significant, long-term source of population structuring in South Indian Hindu populations, and that patterns of migration differ between males and females.


Assuntos
Cromossomos Humanos Y/genética , DNA Mitocondrial/genética , Emigração e Imigração , Genética Populacional , Classe Social , Adulto , Feminino , Hinduísmo , Humanos , Índia , Masculino , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Fatores Sexuais
2.
Genome Res ; 13(7): 1607-18, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12805277

RESUMO

We examine the distribution and structure of human genetic diversity for 710 individuals representing 31 populations from Africa, East Asia, Europe, and India using 100 Alu insertion polymorphisms from all 22 autosomes. Alu diversity is highest in Africans (0.349) and lowest in Europeans (0.297). Alu insertion frequency is lowest in Africans (0.463) and higher in Indians (0.544), E. Asians (0.557), and Europeans (0.559). Large genetic distances are observed among African populations and between African and non-African populations. The root of a neighbor-joining network is located closest to the African populations. These findings are consistent with an African origin of modern humans and with a bottleneck effect in the human populations that left Africa to colonize the rest of the world. Genetic distances among all pairs of populations show a significant product-moment correlation with geographic distances (r = 0.69, P < 0.00001). F(ST), the proportion of genetic diversity attributable to population subdivision is 0.141 for Africans/E. Asians/Europeans, 0.047 for E. Asians/Indians/Europeans, and 0.090 for all 31 populations. Resampling analyses show that approximately 50 Alu polymorphisms are sufficient to obtain accurate and reliable genetic distance estimates. These analyses also demonstrate that markers with higher F(ST) values have greater resolving power and produce more consistent genetic distance estimates.


Assuntos
Elementos Alu/genética , Variação Genética/genética , Polimorfismo Genético/genética , África , Biologia Computacional , Europa (Continente) , Ásia Oriental , Genética Populacional/métodos , Humanos , Índia , Mutagênese Insercional
3.
Am J Hum Genet ; 72(3): 578-89, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12557124

RESUMO

A major goal of biomedical research is to develop the capability to provide highly personalized health care. To do so, it is necessary to understand the distribution of interindividual genetic variation at loci underlying physical characteristics, disease susceptibility, and response to treatment. Variation at these loci commonly exhibits geographic structuring and may contribute to phenotypic differences between groups. Thus, in some situations, it may be important to consider these groups separately. Membership in these groups is commonly inferred by use of a proxy such as place-of-origin or ethnic affiliation. These inferences are frequently weakened, however, by use of surrogates, such as skin color, for these proxies, the distribution of which bears little resemblance to the distribution of neutral genetic variation. Consequently, it has become increasingly controversial whether proxies are sufficient and accurate representations of groups inferred from neutral genetic variation. This raises three questions: how many data are required to identify population structure at a meaningful level of resolution, to what level can population structure be resolved, and do some proxies represent population structure accurately? We assayed 100 Alu insertion polymorphisms in a heterogeneous collection of approximately 565 individuals, approximately 200 of whom were also typed for 60 microsatellites. Stripped of identifying information, correct assignment to the continent of origin (Africa, Asia, or Europe) with a mean accuracy of at least 90% required a minimum of 60 Alu markers or microsatellites and reached 99%-100% when >/=100 loci were used. Less accurate assignment (87%) to the appropriate genetic cluster was possible for a historically admixed sample from southern India. These results set a minimum for the number of markers that must be tested to make strong inferences about detecting population structure among Old World populations under ideal experimental conditions. We note that, whereas some proxies correspond crudely, if at all, to population structure, the heuristic value of others is much higher. This suggests that a more flexible framework is needed for making inferences about population structure and the utility of proxies.


Assuntos
Genética Médica , Genética Populacional , Repetições de Microssatélites , Polimorfismo Genético , África Subsaariana , Elementos Alu/genética , População Negra/genética , Etnicidade , Variação Genética , Humanos , Índia/etnologia , Modelos Genéticos
4.
Hum Biol ; 75(6): 837-53, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15018034

RESUMO

We describe aspects of genetic diversity in several ethnic populations of the Caucasus Mountains of Daghestan using mitochondrial DNA sequences and a sample of 100 polymorphic Alu insertion loci. The mitochondrial DNA (mtDNA) sequences are like those of Europe. Principal coordinates and nearest neighbor statistics show that there is little detectable structure in the distances among populations computed from mtDNA. The Alu frequencies of the Caucasus populations suggest that they have undergone more genetic drift than most other groups since the dispersal of modern humans. Genetic differences among these populations are not large; instead, they are of the same order as distances among populations of Europe. We compare two methods of inference about the demography of ancient colonizing populations from Africa, one based on conventional FST statistics and one based on mean Alu insertion frequencies. The two approaches agree reasonably well if we assume that there was demographic growth in Africa before the diaspora of ancestors of contemporary regional human groups outside Africa.


Assuntos
DNA Mitocondrial/análise , Genética Populacional , Polimorfismo Genético/genética , População Branca/genética , Frequência do Gene/genética , Humanos , Federação Russa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...