Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Microbiol ; 5(6): 872, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32327734

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2.
Cell Host Microbe ; 28(1): 23-30.e5, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32325051

RESUMO

Bacteriophages must rapidly deploy anti-CRISPR proteins (Acrs) to inactivate the RNA-guided nucleases that enforce CRISPR-Cas adaptive immunity in their bacterial hosts. Listeria monocytogenes temperate phages encode up to three anti-Cas9 proteins, with acrIIA1 always present. AcrIIA1 binds and inhibits Cas9 with its C-terminal domain; however, the function of its highly conserved N-terminal domain (NTD) is unknown. Here, we report that the AcrIIA1NTD is a critical transcriptional repressor of the strong anti-CRISPR promoter. A rapid burst of anti-CRISPR transcription occurs during phage infection and the subsequent negative feedback by AcrIIA1NTD is required for optimal phage replication, even in the absence of CRISPR-Cas immunity. In the presence of CRISPR-Cas immunity, full-length AcrIIA1 uses its two-domain architecture to act as a "Cas9 sensor," tuning acr expression according to Cas9 levels. Finally, we identify AcrIIA1NTD homologs in other Firmicutes and demonstrate that they have been co-opted by hosts as "anti-anti-CRISPRs," repressing phage anti-CRISPR deployment.


Assuntos
Bacteriófagos/fisiologia , Proteína 9 Associada à CRISPR/antagonistas & inibidores , Sistemas CRISPR-Cas , Proteínas de Ligação a DNA/metabolismo , Listeria monocytogenes/virologia , Proteínas Repressoras/metabolismo , Proteínas Virais/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica , Engenharia Genética , Interações Hospedeiro-Patógeno , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Repressoras/genética , Proteínas Virais/genética
3.
Cell Host Microbe ; 28(1): 31-40.e9, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32325050

RESUMO

Bacterial CRISPR-Cas systems employ RNA-guided nucleases to destroy phage (viral) DNA. Phages, in turn, have evolved diverse "anti-CRISPR" proteins (Acrs) to counteract acquired immunity. In Listeria monocytogenes, prophages encode two to three distinct anti-Cas9 proteins, with acrIIA1 always present. However, the significance of AcrIIA1's pervasiveness and its mechanism are unknown. Here, we report that AcrIIA1 binds with high affinity to Cas9 via the catalytic HNH domain. During lysogeny in Listeria, AcrIIA1 triggers Cas9 degradation. During lytic infection, however, AcrIIA1 fails to block Cas9 due to its multi-step inactivation mechanism. Thus, phages encode an additional Acr that rapidly binds and inactivates Cas9. AcrIIA1 also uniquely inhibits a highly diverged Cas9 found in Listeria (similar to SauCas9) and Type II-C Cas9s, likely due to Cas9 HNH domain conservation. In summary, Listeria phages inactivate Cas9 in lytic growth using variable, narrow-spectrum inhibitors, while the broad-spectrum AcrIIA1 stimulates Cas9 degradation for protection of the lysogenic genome.


Assuntos
Bacteriófagos/genética , Listeria , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Lisogenia
4.
Nat Microbiol ; 5(4): 620-629, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32218510

RESUMO

CRISPR-Cas adaptive immune systems protect bacteria and archaea against their invading genetic parasites, including bacteriophages/viruses and plasmids. In response to this immunity, many phages have anti-CRISPR (Acr) proteins that inhibit CRISPR-Cas targeting. To date, anti-CRISPR genes have primarily been discovered in phage or prophage genomes. Here, we uncovered acr loci on plasmids and other conjugative elements present in Firmicutes using the Listeria acrIIA1 gene as a marker. The four identified genes, found in Listeria, Enterococcus, Streptococcus and Staphylococcus genomes, can inhibit type II-A SpyCas9 or SauCas9, and are thus named acrIIA16-19. In Enterococcus faecalis, conjugation of a Cas9-targeted plasmid was enhanced by anti-CRISPRs derived from Enterococcus conjugative elements, highlighting a role for Acrs in the dissemination of plasmids. Reciprocal co-immunoprecipitation showed that each Acr protein interacts with Cas9, and Cas9-Acr complexes were unable to cleave DNA. Northern blotting suggests that these anti-CRISPRs manipulate single guide RNA length, loading or stability. Mirroring their activity in bacteria, AcrIIA16 and AcrIIA17 provide robust and highly potent broad-spectrum inhibition of distinct Cas9 proteins in human cells (for example, SpyCas9, SauCas9, SthCas9, NmeCas9 and CjeCas9). This work presents a focused analysis of non-phage Acr proteins, demonstrating a role in horizontal gene transfer bolstered by broad-spectrum CRISPR-Cas9 inhibition.


Assuntos
Proteína 9 Associada à CRISPR/antagonistas & inibidores , Sistemas CRISPR-Cas , Transferência Genética Horizontal , Plasmídeos/metabolismo , RNA Guia de Cinetoplastídeos/antagonistas & inibidores , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Conjugação Genética , DNA/antagonistas & inibidores , DNA/genética , DNA/metabolismo , Enterococcus/genética , Enterococcus/virologia , Células HEK293 , Humanos , Listeria/genética , Listeria/virologia , Plasmídeos/química , Ligação Proteica , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Staphylococcus/genética , Staphylococcus/virologia , Streptococcus/genética , Streptococcus/virologia
5.
Mol Cell ; 73(3): 601-610.e5, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30595438

RESUMO

CRISPR-Cas immune systems utilize RNA-guided nucleases to protect bacteria from bacteriophage infection. Bacteriophages have in turn evolved inhibitory "anti-CRISPR" (Acr) proteins, including six inhibitors (AcrIIA1-AcrIIA6) that can block DNA cutting and genome editing by type II-A CRISPR-Cas9 enzymes. We show here that AcrIIA2 and its more potent homolog, AcrIIA2b, prevent Cas9 binding to DNA by occluding protein residues required for DNA binding. Cryo-EM-determined structures of AcrIIA2 or AcrIIA2b bound to S. pyogenes Cas9 reveal a mode of competitive inhibition of DNA binding that is distinct from other known Acrs. Differences in the temperature dependence of Cas9 inhibition by AcrIIA2 and AcrIIA2b arise from differences in both inhibitor structure and the local inhibitor-binding environment on Cas9. These findings expand the natural toolbox for regulating CRISPR-Cas9 genome editing temporally, spatially, and conditionally.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas , DNA/metabolismo , Edição de Genes/métodos , Fagos de Pseudomonas/metabolismo , Pseudomonas aeruginosa/enzimologia , RNA Guia de Cinetoplastídeos/metabolismo , Temperatura , Proteínas Virais/metabolismo , Ligação Competitiva , Proteína 9 Associada à CRISPR/antagonistas & inibidores , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/ultraestrutura , Microscopia Crioeletrônica , DNA/genética , DNA/ultraestrutura , Escherichia coli/enzimologia , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica , Fagos de Pseudomonas/genética , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/virologia , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/ultraestrutura , Relação Estrutura-Atividade , Proteínas Virais/genética , Proteínas Virais/ultraestrutura
6.
Cell ; 174(4): 917-925.e10, 2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-30033364

RESUMO

Bacteria utilize CRISPR-Cas adaptive immune systems for protection from bacteriophages (phages), and some phages produce anti-CRISPR (Acr) proteins that inhibit immune function. Despite thorough mechanistic and structural information for some Acr proteins, how they are deployed and utilized by a phage during infection is unknown. Here, we show that Acr production does not guarantee phage replication when faced with CRISPR-Cas immunity, but instead, infections fail when phage population numbers fall below a critical threshold. Infections succeed only if a sufficient Acr dose is contributed to a single cell by multiple phage genomes. The production of Acr proteins by phage genomes that fail to replicate leave the cell immunosuppressed, which predisposes the cell for successful infection by other phages in the population. This altruistic mechanism for CRISPR-Cas inhibition demonstrates inter-virus cooperation that may also manifest in other host-parasite interactions.


Assuntos
Bacteriófagos/imunologia , Sistemas CRISPR-Cas/imunologia , Interações Hospedeiro-Patógeno/imunologia , Pseudomonas aeruginosa/imunologia , Pseudomonas aeruginosa/virologia , Proteínas Virais/imunologia , Evolução Molecular , Pseudomonas aeruginosa/genética , Proteínas Virais/metabolismo
7.
Nat Commun ; 9(1): 2197, 2018 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-29875445

RESUMO

Eukaryotic cells employ the ribosome-associated quality control complex (RQC) to maintain homeostasis despite defects that cause ribosomes to stall. The RQC comprises the E3 ubiquitin ligase Ltn1p, the ATPase Cdc48p, Rqc1p, and Rqc2p. Upon ribosome stalling and splitting, the RQC assembles on the 60S species containing unreleased peptidyl-tRNA (60S:peptidyl-tRNA). Ltn1p and Rqc1p facilitate ubiquitination of the incomplete nascent chain, marking it for degradation. Rqc2p stabilizes Ltn1p on the 60S and recruits charged tRNAs to the 60S to catalyze elongation of the nascent protein with carboxy-terminal alanine and threonine extensions (CAT tails). By mobilizing the nascent chain, CAT tailing can expose lysine residues that are hidden in the exit tunnel, thereby supporting efficient ubiquitination. If the ubiquitin-proteasome system is overwhelmed or unavailable, CAT-tailed nascent chains can aggregate in the cytosol or within organelles like mitochondria. Here we identify Vms1p as a tRNA hydrolase that releases stalled polypeptides engaged by the RQC.


Assuntos
Proteínas de Transporte/genética , Biossíntese de Proteínas/genética , Subunidades Ribossômicas Maiores de Eucariotos/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Proteínas de Transporte/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Ligação Proteica , Controle de Qualidade , Aminoacil-RNA de Transferência/genética , Aminoacil-RNA de Transferência/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteína com Valosina/genética , Proteína com Valosina/metabolismo
8.
Elife ; 62017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28718767

RESUMO

Ribosomes can stall during translation due to defects in the mRNA template or translation machinery, leading to the production of incomplete proteins. The Ribosome-associated Quality control Complex (RQC) engages stalled ribosomes and targets nascent polypeptides for proteasomal degradation. However, how each RQC component contributes to this process remains unclear. Here we demonstrate that key RQC activities-Ltn1p-dependent ubiquitination and Rqc2p-mediated Carboxy-terminal Alanine and Threonine (CAT) tail elongation-can be recapitulated in vitro with a yeast cell-free system. Using this approach, we determined that CAT tailing is mechanistically distinct from canonical translation, that Ltn1p-mediated ubiquitination depends on the poorly characterized RQC component Rqc1p, and that the process of CAT tailing enables robust ubiquitination of the nascent polypeptide. These findings establish a novel system to study the RQC and provide a framework for understanding how RQC factors coordinate their activities to facilitate clearance of incompletely synthesized proteins.


Assuntos
Biossíntese de Proteínas , Proteínas de Ligação a RNA/metabolismo , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Sistema Livre de Células , Modificação Traducional de Proteínas , Proteólise , Saccharomyces cerevisiae/enzimologia
9.
Science ; 357(6349): 414-417, 2017 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-28751611

RESUMO

Ribosome stalling leads to recruitment of the ribosome quality control complex (RQC), which targets the partially synthesized polypeptide for proteasomal degradation through the action of the ubiquitin ligase Ltn1p. A second core RQC component, Rqc2p, modifies the nascent polypeptide by adding a carboxyl-terminal alanine and threonine (CAT) tail through a noncanonical elongation reaction. Here we examined the role of CAT-tailing in nascent-chain degradation in budding yeast. We found that Ltn1p efficiently accessed only nascent-chain lysines immediately proximal to the ribosome exit tunnel. For substrates without Ltn1p-accessible lysines, CAT-tailing enabled degradation by exposing lysines sequestered in the ribosome exit tunnel. Thus, CAT-tails do not serve as a degron, but rather provide a fail-safe mechanism that expands the range of RQC-degradable substrates.


Assuntos
Peptídeos/metabolismo , Proteólise , Proteostase , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Elongação da Transcrição Genética , Ubiquitina-Proteína Ligases/metabolismo , Alanina/química , Alanina/metabolismo , Lisina/química , Lisina/metabolismo , Peptídeos/química , Proteínas de Saccharomyces cerevisiae/química , Treonina/química , Treonina/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...