Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Ecol Evol ; 12(8): e9177, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35979521

RESUMO

The mechanistic link between avian oxidative physiology and plumage coloration has attracted considerable attention in past decades. Hence, multiple proximal hypotheses were proposed to explain how oxidative state might covary with the production of melanin and carotenoid pigments. Some hypotheses underscore that these pigments (or their precursors, e.g., glutathione) have antioxidant capacities or function as molecules storing the toxic excess of intracellular compounds, while others highlight that these pigments can act as pro-oxidants under specific conditions. Most studies addressing these associations are at the intraspecific level, while phylogenetic comparative studies are still scarce, though needed to assess the generality of these associations. Here, we tested whether plumage and bare part coloration were related to oxidative physiology at an interspecific level by measuring five oxidative physiology markers (three nonenzymatic antioxidants and two markers of lipid peroxidative damage) in 1387 individuals of 104 European bird species sampled during the breeding season, and by scoring plumage eumelanin, pheomelanin, and carotenoid content for each sex and species. Only the plasma level of reactive oxygen metabolites was related to melanin coloration, being positively associated with eumelanin score and negatively with pheomelanin score. Thus, our results do not support the role of antioxidant glutathione in driving variation in melanin synthesis across species. Furthermore, the carotenoid scores of feathers and bare parts were unrelated to the measured oxidative physiology parameters, further suggesting that the marked differences in pigmentation across birds does not influence their oxidative state.

2.
Zookeys ; 1102: 83-106, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36761151

RESUMO

This paper reviews the bird skin collection housed in the Zoological Museum of Babeș-Bolyai University, Cluj-Napoca, Romania. The collection includes 925 specimens, belonging to 193 species from 53 families and 20 orders, collected between 1859 and 2021. Due to its historical background and the presence of rare species, it is considered to be one of most important ornithological collections in Eastern Europe. Such a collection can serve as a basis for valuable ornithological studies. Furthermore, a map representation with new distribution data for bird species is provided, which represents a source of information for the status of the avifauna of the Carpathian basin in the 19th and 20th centuries.

3.
J Exp Biol ; 224(14)2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34124749

RESUMO

Moulting is a crucial, yet often overlooked life-history stage in many animals, when they renew their integumental structures. This life-history stage is an energetically demanding somatic growth event that has particular importance in birds because feathers play a crucial role in flight, insulation and communication. Somatic growth processes are regulated by the evolutionarily conserved peptide hormone insulin-like growth factor 1 (IGF-1). However, the role of IGF-1 in feather growth remains unknown. In this study, we captured 41 juvenile free-living bearded reedlings (Panurus biarmicus) that had started their first complete moult and brought them into captivity. Then, we manipulated their circulating IGF-1 levels using poly-(lactic-co-glycolid acid) microparticles (microspheres) that provide a sustained release of IGF-1. The treatment increased IGF-1 levels but did not affect the feather growth rate. However, 2 weeks after the treatment, birds in the increased IGF-1 group were moulting more feathers simultaneously than the controls and were at a more advanced stage of moult. Birds with experimentally increased IGF-1 levels had better quality feathers (measured by a lower number of fault bars) than the controls. These results suggest that an increase in IGF-1 does not speed up feather growth, but may alter moult intensity by initiating the renewal of several feathers simultaneously. This may shorten the overall moulting time but may imply costs in terms of IGF-1-induced oxidative stress.


Assuntos
Plumas , Passeriformes , Animais , Fator de Crescimento Insulin-Like I , Muda
4.
Proc Biol Sci ; 288(1943): 20203092, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33499787

RESUMO

Social groups often consist of diverse phenotypes, including personality types, and this diversity is known to affect the functioning of the group as a whole. Social selection theory proposes that group composition (i.e. social environment) also influences the performance of individual group members. However, the effect of group behavioural composition on group members remains largely unexplored, and it is still contentious whether individuals benefit more in a social environment with homogeneous or diverse behavioural composition. We experimentally formed groups of house sparrows Passer domesticus with high and low diversity of personality (exploratory behaviour), and found that their physiological state (body condition, physiological stress and oxidative damage) improved with increasing group-level diversity of personality. These findings demonstrate that group personality composition affects the condition of group members and individuals benefit from social heterosis (i.e. associating with a diverse set of behavioural types). This aspect of the social life can play a key role in affiliation rules of social animals and might explain the evolutionary coexistence of different personalities in nature.


Assuntos
Personalidade , Pardais , Animais , Comportamento Animal , Evolução Biológica , Comportamento Exploratório , Estresse Fisiológico
5.
Evolution ; 74(10): 2365-2376, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32748406

RESUMO

Down feathers are the first feather types that appear in both the phylogenetic and the ontogenetic history of birds. Although it is widely acknowledged that the primary function of downy elements is insulation, little is known about the interspecific variability in the structural morphology of these feathers, and the environmental factors that have influenced their evolution. Here, we collected samples of down and afterfeathers from 156 bird species and measured key morphological characters that define the insulatory properties of the downy layer. We then tested if habitat and climatic conditions could explain the observed between-species variation in down feather structure. We show that habitat has a very strong and clearly defined effect on down feather morphology. Feather size, barbule length and nodus density all decreased from terrestrial toward aquatic birds, with riparian species exhibiting intermediate characters. Wintering climate, expressed as windchill (a combined measure of the ambient temperature and wind speed) had limited effects on down morphology, colder climate only being associated with higher nodus density in dorsal down feathers. Overall, an aquatic lifestyle selects for a denser plumulaceous layer, while the effect of harsh wintering conditions on downy structures appear limited. These results provide key evidence of adaptations to habitat at the level of the downy layer, both on the scale of macro- and micro-elements of the plumage. Moreover, they reveal characters of convergent evolution in the avian plumage and mammalian fur, that match the varying needs of insulation in terrestrial and aquatic modes of life.


Assuntos
Adaptação Biológica , Aves/fisiologia , Regulação da Temperatura Corporal/genética , Plumas/anatomia & histologia , Filogenia , Animais , Ecossistema
6.
Funct Ecol ; 33(1): 152-161, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34290466

RESUMO

1. The mechanisms that underpin the evolution of ageing and life histories remain elusive. Oxidative stress, which results in accumulated cellular damages, is one of the mechanisms suggested to play a role. 2. In this paper, we set out to test the "oxidative stress theory of ageing" and the "oxidative stress hypothesis of life histories" using a comprehensive phylogenetic comparison based on an unprecedented dataset of oxidative physiology in 88 free-living bird species. 3. We show for the first time that bird species with longer lifespan have higher non-enzymatic antioxidant capacity and suffer less oxidative damage to their lipids. We also found that bird species featuring a faster pace-of-life either have lower non-enzymatic antioxidant capacity or are exposed to higher levels of oxidative damage, while adult annual mortality does not relate to oxidative state. 4. These results reinforce the role of oxidative stress in the evolution of lifespan and also corroborate the role of oxidative state in the evolution of life histories among free-living birds.

7.
Biol Lett ; 11(11)2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26538538

RESUMO

Long-distance migratory birds have relatively smaller brains than short-distance migrants or residents. Here, we test whether reduction in brain size with migration distance can be generalized across the different brain regions suggested to play key roles in orientation during migration. Based on 152 bird species, belonging to 61 avian families from six continents, we show that the sizes of both the telencephalon and the whole brain decrease, and the relative size of the optic lobe increases, while cerebellum size does not change with increasing migration distance. Body mass, whole brain size, optic lobe size and wing aspect ratio together account for a remarkable 46% of interspecific variation in average migration distance across bird species. These results indicate that visual acuity might be a primary neural adaptation to the ecological challenge of migration.


Assuntos
Migração Animal , Aves/anatomia & histologia , Encéfalo/anatomia & histologia , Sinais (Psicologia) , Animais , Aves/fisiologia , Peso Corporal , Encéfalo/fisiologia , Cerebelo/fisiologia , Voo Animal , Lobo Óptico de Animais não Mamíferos/fisiologia , Tamanho do Órgão , Orientação , Telencéfalo/fisiologia , Asas de Animais/anatomia & histologia
8.
PLoS One ; 10(6): e0130844, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26110255

RESUMO

Sexual selection and aerodynamic forces affecting structural properties of the flight feathers of birds are poorly understood. Here, we compared the structural features of the innermost primary wing feather (P1) and the sexually dimorphic outermost (Ta6) and monomorphic second outermost (Ta5) tail feathers of barn swallows (Hirundo rustica) from a Romanian population to investigate how sexual selection and resistance to aerodynamic forces affect structural differences among these feathers. Furthermore, we compared structural properties of Ta6 of barn swallows from six European populations. Finally, we determined the relationship between feather growth bars width (GBW) and the structural properties of tail feathers. The structure of P1 indicates strong resistance against aerodynamic forces, while the narrow rachis, low vane density and low bending stiffness of tail feathers suggest reduced resistance against airflow. The highly elongated Ta6 is characterized by structural modifications such as large rachis width and increased barbule density in relation to the less elongated Ta5, which can be explained by increased length and/or high aerodynamic forces acting at the leading tail edge. However, these changes in Ta6 structure do not allow for full compensation of elongation, as reflected by the reduced bending stiffness of Ta6. Ta6 elongation in males resulted in feathers with reduced resistance, as shown by the low barb density and reduced bending stiffness compared to females. The inconsistency in sexual dimorphism and in change in quality traits of Ta6 among six European populations shows that multiple factors may contribute to shaping population differences. In general, the difference in quality traits between tail feathers cannot be explained by the GBW of feathers. Our results show that the material and structural properties of wing and tail feathers of barn swallows change as a result of aerodynamic forces and sexual selection, although the result of these changes can be contrasting.


Assuntos
Plumas/anatomia & histologia , Caracteres Sexuais , Andorinhas/anatomia & histologia , Cauda/anatomia & histologia , Asas de Animais/anatomia & histologia , Animais , Evolução Biológica , Feminino , Masculino , Fenótipo
9.
Physiol Biochem Zool ; 88(4): 395-405, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26052636

RESUMO

Temporal variation in oxidative physiology and its associated immune function may occur as a result of changes in parasite infection over the year. Evidence from field and laboratory studies suggests links between infection risk, oxidative stress, and the ability of animals to mount an immune response; however, the importance of parasites in mediating seasonal change in physiological makeup is still debated. Also, little is known about the temporal consistency of relationships among parasite infestation, markers of oxidative status and immune function in wild animals, and whether variation in oxidative measures can be viewed as a single integrated system. To address these questions, we sampled free-living house sparrows (Passer domesticus) every 2 mo over a complete year and measured infestation with coccidian parasites as well as nine traits that reflect condition, oxidative physiology, and immune function. We found significant seasonal variation in coccidian infestation and in seven out of nine condition and physiological variables over the year. However, we found little support for parasite-mediated change in condition, oxidative physiology, and immune functions in house sparrows. In accordance with this, we found no temporal consistency in relationships between the intensity of infestation and physiology. Among measures of oxidative physiology, antioxidants (measured as the total antioxidant capacity and the concentration of uric acid in the plasma) and oxidative damage (measured through the level of malondialdehyde in plasma) positively and consistently covaried over the year, while no such associations were found for the rest of traits (body mass, total glutathione, and leukocyte numbers). Our results show that natural levels of chronic coccidian infection have a limited effect on the seasonal change of physiological traits, suggesting that the variation of the latter is probably more affected by short-term disturbances, such as acute infection and/or season-specific stress stimuli.


Assuntos
Coccídios/isolamento & purificação , Pardais/imunologia , Pardais/parasitologia , Animais , Antioxidantes/metabolismo , Doenças das Aves/imunologia , Doenças das Aves/parasitologia , Peso Corporal , Coccidiose/imunologia , Coccidiose/veterinária , Feminino , Masculino , Oxirredução , Estações do Ano , Pardais/metabolismo
10.
Oecologia ; 177(1): 147-58, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25312403

RESUMO

Constitutive innate immunity is the first lined of defence against infections, but the causes determining its variability among species are poorly understood. The pace of life hypothesis predicts that species with a fast speed of life, characterized by high energy turnover and short developmental time, invest relatively little in defence in favour of growth and early reproduction, whereas 'slow-living' species are predicted to invest more resources into costly defence. We conducted phylogenetic comparative analysis on 105 European bird species and determined that the number of leukocytes, and the levels of natural antibodies (NAbs) and complement, measured on adult birds, increased or tended to positively correlate with the length of incubation period. However, we found that the length of incubation and fledging periods have opposite effects on immune defence (i.e. immune parameters show a negative association with the length of fledging period). Our results suggest that the contrasting effects of the incubation and fledging periods are related to the timing of the development of immune cells and of NAbs and complement, which largely mature during the embryonic phase of development. In support of this hypothesis, we found that species with a long relative incubation period [i.e. whose total pre-fledging developmental time (incubation plus fledging) consists largely of the incubation period] invested more in constitutive innate immunity. Finally, in support of the pace of life hypothesis, for a subsample of 63 species, we found that the basal metabolic rate significantly or tended to negatively correlate with immune measures.


Assuntos
Metabolismo Basal , Aves , Imunidade Inata , Filogenia , Reprodução , Animais , Aves/crescimento & desenvolvimento , Aves/imunologia , Proteínas do Sistema Complemento/metabolismo , Leucócitos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...