Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
PLoS Pathog ; 20(4): e1012135, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38593120

RESUMO

The rebound competent viral reservoir (RCVR)-virus that persists during antiretroviral treatment (ART) and can reignite systemic infection when treatment is stopped-is the primary barrier to eradicating HIV. We used time to initiation of ART during primary infection of rhesus macaques (RMs) after intravenous challenge with barcoded SIVmac239 as a means to elucidate the dynamics of RCVR establishment in groups of RMs by creating a multi-log range of pre-ART viral loads and then assessed viral time-to-rebound and reactivation rates resulting from the discontinuation of ART after one year. RMs started on ART on days 3, 4, 5, 6, 7, 9 or 12 post-infection showed a nearly 10-fold difference in pre-ART viral measurements for successive ART-initiation timepoints. Only 1 of 8 RMs initiating ART on days 3 and 4 rebounded after ART interruption despite measurable pre-ART plasma viremia. Rebounding plasma from the 1 rebounding RM contained only a single barcode lineage detected at day 50 post-ART. All RMs starting ART on days 5 and 6 rebounded between 14- and 50-days post-ART with 1-2 rebounding variants each. RMs starting ART on days 7, 9, and 12 had similar time-to-measurable plasma rebound kinetics despite multiple log differences in pre-ART plasma viral load (pVL), with all RMs rebounding between 7- and 16-days post-ART with 3-28 rebounding lineages. Calculated reactivation rates per pre-ART pVL were highest for RMs starting ART on days 5, 6, and 7 after which the rate of accumulation of the RCVR markedly decreased for RMs treated on days 9 and 12, consistent with multiphasic establishment and near saturation of the RCVR within 2 weeks post infection. Taken together, these data highlight the heterogeneity of the RCVR between RMs, the stochastic establishment of the very early RCVR, and the saturability of the RCVR prior to peak viral infection.


Assuntos
Infecções por HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Vírus da Imunodeficiência Símia/fisiologia , Macaca mulatta , Replicação Viral , Antirretrovirais/uso terapêutico , Antirretrovirais/farmacologia , Infecções por HIV/tratamento farmacológico , Carga Viral
2.
Sci Immunol ; 7(72): eabn9301, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35714200

RESUMO

The strain 68-1 rhesus cytomegalovirus (RhCMV)-based vaccine for simian immunodeficiency virus (SIV) can stringently protect rhesus macaques (RMs) from SIV challenge by arresting viral replication early in primary infection. This vaccine elicits unconventional SIV-specific CD8+ T cells that recognize epitopes presented by major histocompatibility complex (MHC)-II and MHC-E instead of MHC-Ia. Although RhCMV/SIV vaccines based on strains that only elicit MHC-II- and/or MHC-Ia-restricted CD8+ T cells do not protect against SIV, it remains unclear whether MHC-E-restricted T cells are directly responsible for protection and whether these responses can be separated from the MHC-II-restricted component. Using host microRNA (miR)-mediated vector tropism restriction, we show that the priming of MHC-II and MHC-E epitope-targeted responses depended on vector infection of different nonoverlapping cell types in RMs. Selective inhibition of RhCMV infection in myeloid cells with miR-142-mediated tropism restriction eliminated MHC-E epitope-targeted CD8+ T cell priming, yielding an exclusively MHC-II epitope-targeted response. Inhibition with the endothelial cell-selective miR-126 eliminated MHC-II epitope-targeted CD8+ T cell priming, yielding an exclusively MHC-E epitope-targeted response. Dual miR-142 + miR-126-mediated tropism restriction reverted CD8+ T cell responses back to conventional MHC-Ia epitope targeting. Although the magnitude and differentiation state of these CD8+ T cell responses were generally similar, only the vectors programmed to elicit MHC-E-restricted CD8+ T cell responses provided protection against SIV challenge, directly demonstrating the essential role of these responses in RhCMV/SIV vaccine efficacy.


Assuntos
Vacinas contra Citomegalovirus , MicroRNAs , Vacinas contra a SAIDS , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Linfócitos T CD8-Positivos , Citomegalovirus/genética , Epitopos , Macaca mulatta , Complexo Principal de Histocompatibilidade , Células Mieloides , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Vírus da Imunodeficiência Símia/genética , Tropismo , Eficácia de Vacinas
3.
PLoS Pathog ; 17(7): e1009278, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34228762

RESUMO

Simian immunodeficiency virus (SIV) challenge of rhesus macaques (RMs) vaccinated with strain 68-1 Rhesus Cytomegalovirus (RhCMV) vectors expressing SIV proteins (RhCMV/SIV) results in a binary outcome: stringent control and subsequent clearance of highly pathogenic SIV in ~55% of vaccinated RMs with no protection in the remaining 45%. Although previous work indicates that unconventionally restricted, SIV-specific, effector-memory (EM)-biased CD8+ T cell responses are necessary for efficacy, the magnitude of these responses does not predict efficacy, and the basis of protection vs. non-protection in 68-1 RhCMV/SIV vector-vaccinated RMs has not been elucidated. Here, we report that 68-1 RhCMV/SIV vector administration strikingly alters the whole blood transcriptome of vaccinated RMs, with the sustained induction of specific immune-related pathways, including immune cell, toll-like receptor (TLR), inflammasome/cell death, and interleukin-15 (IL-15) signaling, significantly correlating with subsequent vaccine efficacy. Treatment of a separate RM cohort with IL-15 confirmed the central involvement of this cytokine in the protection signature, linking the major innate and adaptive immune gene expression networks that correlate with RhCMV/SIV vaccine efficacy. This change-from-baseline IL-15 response signature was also demonstrated to significantly correlate with vaccine efficacy in an independent validation cohort of vaccinated and challenged RMs. The differential IL-15 gene set response to vaccination strongly correlated with the pre-vaccination activity of this pathway, with reduced baseline expression of IL-15 response genes significantly correlating with higher vaccine-induced induction of IL-15 signaling and subsequent vaccine protection, suggesting that a robust de novo vaccine-induced IL-15 signaling response is needed to program vaccine efficacy. Thus, the RhCMV/SIV vaccine imparts a coordinated and persistent induction of innate and adaptive immune pathways featuring IL-15, a known regulator of CD8+ T cell function, that support the ability of vaccine-elicited unconventionally restricted CD8+ T cells to mediate protection against SIV challenge.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Interleucina-15/imunologia , Vacinas contra a SAIDS/imunologia , Vírus da Imunodeficiência Símia/imunologia , Animais , Citomegalovirus , Feminino , Vetores Genéticos , Macaca mulatta , Masculino , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle
4.
Sci Immunol ; 6(57)2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33766849

RESUMO

Simian immunodeficiency virus (SIV) insert-expressing, 68-1 rhesus cytomegalovirus (RhCMV/SIV) vectors elicit major histocompatibility complex E (MHC-E)- and MHC-II-restricted, SIV-specific CD8+ T cell responses, but the basis of these unconventional responses and their contribution to demonstrated vaccine efficacy against SIV challenge in the rhesus monkeys (RMs) have not been characterized. We show that these unconventional responses resulted from a chance genetic rearrangement in 68-1 RhCMV that abrogated the function of eight distinct immunomodulatory gene products encoded in two RhCMV genomic regions (Rh157.5/Rh157.4 and Rh158-161), revealing three patterns of unconventional response inhibition. Differential repair of these genes with either RhCMV-derived or orthologous human CMV (HCMV)-derived sequences (UL128/UL130; UL146/UL147) leads to either of two distinct CD8+ T cell response types-MHC-Ia-restricted only or a mix of MHC-II- and MHC-Ia-restricted CD8+ T cells. Response magnitude and functional differentiation are similar to RhCMV 68-1, but neither alternative response type mediated protection against SIV challenge. These findings implicate MHC-E-restricted CD8+ T cell responses as mediators of anti-SIV efficacy and indicate that translation of RhCMV/SIV vector efficacy to humans will likely require deletion of all genes that inhibit these responses from the HCMV/HIV vector.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Reprogramação Celular/imunologia , Infecções por Citomegalovirus/veterinária , Citomegalovirus/imunologia , Doenças dos Macacos/prevenção & controle , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vacinas Virais/imunologia , Animais , Antígenos Virais/genética , Antígenos Virais/imunologia , Linfócitos T CD8-Positivos/metabolismo , Reprogramação Celular/genética , Engenharia Genética/métodos , Vetores Genéticos/genética , Imunogenicidade da Vacina , Memória Imunológica , Macaca mulatta , Doenças dos Macacos/imunologia , Doenças dos Macacos/virologia , Fases de Leitura Aberta/genética , Fases de Leitura Aberta/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Eficácia de Vacinas
5.
Science ; 372(6541)2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33766941

RESUMO

Strain 68-1 rhesus cytomegalovirus (RhCMV) vectors expressing simian immunodeficiency virus (SIV) antigens elicit CD8+ T cells recognizing epitopes presented by major histocompatibility complex II (MHC-II) and MHC-E but not MHC-Ia. These immune responses mediate replication arrest of SIV in 50 to 60% of monkeys. We show that the peptide VMAPRTLLL (VL9) embedded within the RhCMV protein Rh67 promotes intracellular MHC-E transport and recognition of RhCMV-infected fibroblasts by MHC-E-restricted CD8+ T cells. Deletion or mutation of viral VL9 abrogated MHC-E-restricted CD8+ T cell priming, resulting in CD8+ T cell responses exclusively targeting MHC-II-restricted epitopes. These responses were comparable in magnitude and differentiation to responses elicited by 68-1 vectors but did not protect against SIV. Thus, Rh67-enabled direct priming of MHC-E-restricted T cells is crucial for RhCMV/SIV vaccine efficacy.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Citomegalovirus/metabolismo , Vetores Genéticos/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Fragmentos de Peptídeos/metabolismo , Vacinas contra a SAIDS/imunologia , Animais , Linhagem Celular , Citomegalovirus/genética , Epitopos de Linfócito T/imunologia , Fibroblastos/metabolismo , Vetores Genéticos/genética , Antígenos de Histocompatibilidade Classe I/genética , Ligantes , Macaca mulatta , Fragmentos de Peptídeos/genética , Transporte Proteico , Vírus da Imunodeficiência Símia , Antígenos HLA-E
6.
J Clin Invest ; 131(6)2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33465055

RESUMO

The effectiveness of virus-specific strategies, including administered HIV-specific mAbs, to target cells that persistently harbor latent, rebound-competent HIV genomes during combination antiretroviral therapy (cART) has been limited by inefficient induction of viral protein expression. To examine antibody-mediated viral reservoir targeting without a need for viral induction, we used an anti-CD4 mAb to deplete both infected and uninfected CD4+ T cells. Ten rhesus macaques infected with barcoded SIVmac239M received cART for 93 weeks starting 4 days after infection. During cART, 5 animals received 5 to 6 anti-CD4 antibody administrations and CD4+ T cell populations were then allowed 1 year on cART to recover. Despite profound CD4+ T cell depletion in blood and lymph nodes, time to viral rebound following cART cessation was not significantly delayed in anti-CD4-treated animals compared with controls. Viral reactivation rates, determined based on rebounding SIVmac239M clonotype proportions, also were not significantly different in CD4-depleted animals. Notably, antibody-mediated depletion was limited in rectal tissue and negligible in lymphoid follicles. These results suggest that, even if robust viral reactivation can be achieved, antibody-mediated viral reservoir depletion may be limited in key tissue sites.


Assuntos
Antirretrovirais/administração & dosagem , Anticorpos Antivirais/administração & dosagem , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Vírus da Imunodeficiência Símia/imunologia , Animais , Fármacos Anti-HIV/administração & dosagem , Anticorpos Monoclonais/administração & dosagem , Antígenos CD4/antagonistas & inibidores , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Feminino , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , HIV-1/fisiologia , Humanos , Depleção Linfocítica , Tecido Linfoide/imunologia , Tecido Linfoide/virologia , Macaca mulatta , Masculino , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Vírus da Imunodeficiência Símia/fisiologia , Carga Viral/efeitos dos fármacos , Carga Viral/imunologia , Ativação Viral/efeitos dos fármacos , Ativação Viral/imunologia , Replicação Viral/efeitos dos fármacos , Replicação Viral/imunologia
7.
Sci Transl Med ; 11(501)2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31316007

RESUMO

Previous studies have established that strain 68-1-derived rhesus cytomegalovirus (RhCMV) vectors expressing simian immunodeficiency virus (SIV) proteins (RhCMV/SIV) are able to elicit and maintain cellular immune responses that provide protection against mucosal challenge of highly pathogenic SIV in rhesus monkeys (RMs). However, these efficacious RhCMV/SIV vectors were replication and spread competent and therefore have the potential to cause disease in immunocompromised subjects. To develop a safer CMV-based vaccine for clinical use, we attenuated 68-1 RhCMV/SIV vectors by deletion of the Rh110 gene encoding the pp71 tegument protein (ΔRh110), allowing for suppression of lytic gene expression. ΔRh110 RhCMV/SIV vectors are highly spread deficient in vivo (~1000-fold compared to the parent vector) yet are still able to superinfect RhCMV+ RMs and generate high-frequency effector-memory-biased T cell responses. Here, we demonstrate that ΔRh110 68-1 RhCMV/SIV-expressing homologous or heterologous SIV antigens are highly efficacious against intravaginal (IVag) SIVmac239 challenge, providing control and progressive clearance of SIV infection in 59% of vaccinated RMs. Moreover, among 12 ΔRh110 RhCMV/SIV-vaccinated RMs that controlled and progressively cleared an initial SIV challenge, 9 were able to stringently control a second SIV challenge ~3 years after last vaccination, demonstrating the durability of this vaccine. Thus, ΔRh110 RhCMV/SIV vectors have a safety and efficacy profile that warrants adaptation and clinical evaluation of corresponding HCMV vectors as a prophylactic HIV/AIDS vaccine.


Assuntos
Vacinas contra Citomegalovirus/imunologia , Citomegalovirus/imunologia , Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/imunologia , Vacinas Atenuadas/imunologia , Animais , Vetores Genéticos/metabolismo , Macaca mulatta , Necrose , Linfócitos T/imunologia , Fatores de Tempo , Resultado do Tratamento , Vacinação
8.
JCI Insight ; 4(11)2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31167974

RESUMO

Reduction/elimination of HIV-1 reservoirs that persist despite combination antiretroviral therapy (cART) will likely require induction of viral expression by residual infected cells and enhanced clearance of these cells. TLR7 agonists have potential to mediate these activities. We evaluated immunologic and virologic effects of repeated doses of the TLR7 agonist GS-9620 in SIV-infected rhesus macaques receiving cART, which was initiated at 13 days after infection and was continued for 75 weeks prior to GS-9620 administration. During cART, GS-9620 induced transient upregulation of IFN-stimulated genes in blood and tissues, increases in plasma cytokines, and changes in immune cell population activation and phenotypes but did not result in measurable increases in plasma viremia or viral RNA-to-viral DNA ratio in PBMCs or tissues nor decreases in viral DNA in PBMC or tissues. SIV-specific CD8+ T cell responses, negligible prior to GS-9620 treatment, were not measurably boosted by treatment; a second course of GS-9620 administration overlapping with later cART discontinuation was associated with increased CD8+ T cell responses during viral recrudescence. These results confirm and extend evidence for GS-9620-mediated enhancement of antiviral immune responses in SIV-infected macaques but suggest that GS-9620-mediated viral induction may depend critically on the timing of initiation and duration of cART and resulting characteristics of viral reservoirs.


Assuntos
Antirretrovirais , Pteridinas , Síndrome de Imunodeficiência Adquirida dos Símios , Receptor 7 Toll-Like/agonistas , Viremia , Animais , Antirretrovirais/administração & dosagem , Antirretrovirais/farmacologia , Antirretrovirais/uso terapêutico , Linfócitos T CD8-Positivos/imunologia , Citocinas/metabolismo , Quimioterapia Combinada , Macaca mulatta , Masculino , Pteridinas/administração & dosagem , Pteridinas/farmacologia , Pteridinas/uso terapêutico , RNA Viral/genética , RNA Viral/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Regulação para Cima/efeitos dos fármacos , Carga Viral/efeitos dos fármacos , Viremia/tratamento farmacológico , Viremia/imunologia , Viremia/virologia
9.
Nat Med ; 24(9): 1430-1440, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30082858

RESUMO

Prophylactic vaccination of rhesus macaques with rhesus cytomegalovirus (RhCMV) vectors expressing simian immunodeficiency virus (SIV) antigens (RhCMV/SIV) elicits immune responses that stringently control highly pathogenic SIV infection, with subsequent apparent clearance of the infection, in ~50% of vaccinees. In contrast, here, we show that therapeutic RhCMV/SIV vaccination of rhesus macaques previously infected with SIV and given continuous combination antiretroviral therapy (cART) beginning 4-9 d post-SIV infection does not mediate measurable SIV reservoir clearance during over 600 d of follow-up on cART relative to RhCMV/control vaccination. However, none of the six animals started on cART on day four or five, across both RhCMV/SIV- and RhCMV/control-vaccinated groups, those rhesus macaques with SIV reservoirs most closely resembling those of prophylactically RhCMV/SIV-vaccinated and protected animals early in their course, showed post-cART viral rebound with up to nine months of follow-up. Moreover, at necropsy, these rhesus macaques showed little to no evidence of replication-competent SIV. These results suggest that the early SIV reservoir is limited in durability and that effective blockade of viral replication and spread in this critical time window by either pharmacologic or immunologic suppression may result in reduction, and potentially loss, of rebound-competent virus over a period of ~two years.


Assuntos
Antirretrovirais/uso terapêutico , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/fisiologia , Transferência Adotiva , Animais , Antirretrovirais/farmacologia , Quimioterapia Combinada , Cinética , Macaca mulatta , Necrose , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Vacinação , Vacinas Virais/imunologia , Viremia/tratamento farmacológico , Replicação Viral
10.
AIDS Res Hum Retroviruses ; 34(11): 993-1001, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29869527

RESUMO

Although effective for suppressing viral replication, combination antiretroviral treatment (cART) does not represent definitive therapy for HIV infection due to persistence of replication-competent viral reservoirs. The advent of effective cART regimens for simian immunodeficiency virus (SIV)-infected nonhuman primates (NHP) has enabled the development of relevant models for studying viral reservoirs and intervention strategies targeting them. Viral reservoir measurements are crucial for such studies but are problematic. Quantitative polymerase chain reaction (PCR) assays overestimate the size of the replication competent viral reservoir, as not all detected viral genomes are intact. Quantitative viral outgrowth assays measure replication competence, but they suffer from limited precision and dynamic range, and require large numbers of cells. Ex vivo virus induction assays to detect cells harboring inducible virus represent an experimental middle ground, but detection of inducible viral RNA in such assays does not necessarily indicate production of virions, while detection of more immunologically relevant viral proteins, including p27CA, by conventional enzyme-linked immunosorbent assays (ELISA) lacks sensitivity. An ultrasensitive digital SIV Gag p27 assay was developed, which is 100-fold more sensitive than a conventional ELISA. In ex vivo virus induction assays, the quantification of SIV Gag p27 produced by stimulated CD4+ T cells from rhesus macaques receiving cART enabled earlier and more sensitive detection than conventional ELISA-based approaches and was highly correlated with SIV RNA, as measured by quantitative reverse transcription PCR. This ultrasensitive p27 assay provides a new tool to assess ongoing replication and reactivation of infectious virus from reservoirs in SIV-infected NHP.


Assuntos
Produtos do Gene gag/análise , Imunoensaio/métodos , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/isolamento & purificação , Animais , Antirretrovirais/uso terapêutico , Linfócitos T CD4-Positivos/virologia , Modelos Animais de Doenças , Produtos do Gene gag/imunologia , Imunoensaio/normas , Macaca mulatta , RNA Viral/análise , RNA Viral/genética , Sensibilidade e Especificidade , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Vírus da Imunodeficiência Símia/imunologia , Vírus da Imunodeficiência Símia/fisiologia , Ativação Viral
12.
PLoS Pathog ; 13(5): e1006359, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28472156

RESUMO

HIV and SIV infection dynamics are commonly investigated by measuring plasma viral loads. However, this total viral load value represents the sum of many individual infection events, which are difficult to independently track using conventional sequencing approaches. To overcome this challenge, we generated a genetically tagged virus stock (SIVmac239M) with a 34-base genetic barcode inserted between the vpx and vpr accessory genes of the infectious molecular clone SIVmac239. Next-generation sequencing of the virus stock identified at least 9,336 individual barcodes, or clonotypes, with an average genetic distance of 7 bases between any two barcodes. In vitro infection of rhesus CD4+ T cells and in vivo infection of rhesus macaques revealed levels of viral replication of SIVmac239M comparable to parental SIVmac239. After intravenous inoculation of 2.2x105 infectious units of SIVmac239M, an average of 1,247 barcodes were identified during acute infection in 26 infected rhesus macaques. Of the barcodes identified in the stock, at least 85.6% actively replicated in at least one animal, and on average each barcode was found in 5 monkeys. Four infected animals were treated with combination antiretroviral therapy (cART) for 82 days starting on day 6 post-infection (study 1). Plasma viremia was reduced from >106 to <15 vRNA copies/mL by the time treatment was interrupted. Virus rapidly rebounded following treatment interruption and between 87 and 136 distinct clonotypes were detected in plasma at peak rebound viremia. This study confirmed that SIVmac239M viremia could be successfully curtailed with cART, and that upon cART discontinuation, rebounding viral variants could be identified and quantified. An additional 6 animals infected with SIVmac239M were treated with cART beginning on day 4 post-infection for 305, 374, or 482 days (study 2). Upon treatment interruption, between 4 and 8 distinct viral clonotypes were detected in each animal at peak rebound viremia. The relative proportions of the rebounding viral clonotypes, spanning a range of 5 logs, were largely preserved over time for each animal. The viral growth rate during recrudescence and the relative abundance of each rebounding clonotype were used to estimate the average frequency of reactivation per animal. Using these parameters, reactivation frequencies were calculated and ranged from 0.33-0.70 events per day, likely representing reactivation from long-lived latently infected cells. The use of SIVmac239M therefore provides a powerful tool to investigate SIV latency and the frequency of viral reactivation after treatment interruption.


Assuntos
Variação Genética , Genoma Viral/genética , Modelos Teóricos , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/fisiologia , Replicação Viral , Animais , Antirretrovirais/uso terapêutico , Linfócitos T CD4-Positivos/virologia , Marcadores Genéticos/genética , Macaca mulatta , Masculino , Análise de Sequência de DNA , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Vírus da Imunodeficiência Símia/genética , Carga Viral , Viremia
13.
Clin Vaccine Immunol ; 24(1)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27655885

RESUMO

Our goal is to develop a pediatric combination vaccine to protect the vulnerable infant population against human immunodeficiency virus type 1 (HIV-1) and tuberculosis (TB) infections. The vaccine consists of an auxotroph Mycobacterium tuberculosis strain that coexpresses HIV antigens. Utilizing an infant rhesus macaque model, we have previously shown that this attenuated M. tuberculosis (AMtb)-simian immunodeficiency virus (SIV) vaccine is immunogenic, and although the vaccine did not prevent oral SIV infection, a subset of vaccinated animals was able to partially control virus replication. However, unexpectedly, vaccinated infants required fewer SIV exposures to become infected compared to naive controls. Considering that the current TB vaccine, Mycobacterium bovis bacillus Calmette-Guérin (BCG), can induce potent innate immune responses and confer pathogen-unspecific trained immunity, we hypothesized that an imbalance between enhanced myeloid cell function and immune activation might have influenced the outcome of oral SIV challenge in AMtb-SIV-vaccinated infants. To address this question, we used archived samples from unchallenged animals from our previous AMtb-SIV vaccine studies and vaccinated additional infant macaques with BCG or AMtb only. Our results show that vaccinated infants, regardless of vaccine strain or regimen, had enhanced myeloid cell responses. However, CD4+ T cells were concurrently activated, and the persistence of these activated target cells in oral and/or gastrointestinal tissues may have facilitated oral SIV infection. Immune activation was more pronounced in BCG-vaccinated infant macaques than in AMtb-vaccinated infant macaques, indicating a role for vaccine attenuation. These findings underline the importance of understanding the interplay of vaccine-induced immunity and immune activation and its effect on HIV acquisition risk and outcome in infants.


Assuntos
Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vacinas contra a Tuberculose/imunologia , Tuberculose/prevenção & controle , Animais , Interações Medicamentosas , Macaca mulatta , Vacinas contra a SAIDS/administração & dosagem , Resultado do Tratamento , Vacinas contra a Tuberculose/administração & dosagem , Vacinas Combinadas/administração & dosagem , Vacinas Combinadas/imunologia
14.
Science ; 353(6303): 1045-1049, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27540005

RESUMO

HIV-1-specific broadly neutralizing antibodies (bNAbs) can protect rhesus monkeys against simian-human immunodeficiency virus (SHIV) challenge. However, the site of antibody interception of virus and the mechanism of antibody-mediated protection remain unclear. We administered a fully protective dose of the bNAb PGT121 to rhesus monkeys and challenged them intravaginally with SHIV-SF162P3. In PGT121-treated animals, we detected low levels of viral RNA and viral DNA in distal tissues for seven days following challenge. Viral RNA-positive tissues showed transcriptomic changes indicative of innate immune activation, and cells from these tissues initiated infection after adoptive transfer into naïve hosts. These data demonstrate that bNAb-mediated protection against a mucosal virus challenge can involve clearance of infectious virus in distal tissues.


Assuntos
Anticorpos Neutralizantes/administração & dosagem , Anticorpos Anti-HIV/administração & dosagem , HIV-1/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/imunologia , Transferência Adotiva , Animais , Anticorpos Neutralizantes/imunologia , DNA Viral/análise , Feminino , Anticorpos Anti-HIV/imunologia , Imunidade Inata/genética , Imunidade Inata/imunologia , Macaca mulatta , RNA Viral/análise , Transcriptoma , Vagina/virologia
15.
Antimicrob Agents Chemother ; 60(3): 1560-72, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26711758

RESUMO

Replication-competent human immunodeficiency virus (HIV) persists in infected people despite suppressive combination antiretroviral therapy (cART), and it represents a major obstacle to HIV functional cure or eradication. We have developed a model of cART-mediated viral suppression in simian human immunodeficiency virus (SIV) mac239-infected Indian rhesus macaques and evaluated the impact of the histone deacetylase inhibitor (HDACi) romidepsin (RMD) on viremia in vivo. Eight macaques virologically suppressed to clinically relevant levels (<30 viral RNA copies/ml of plasma), using a three-class five-drug cART regimen, received multiple intravenous infusions of either RMD (n = 5) or saline (n = 3) starting 31 to 54 weeks after cART initiation. In vivo RMD treatment resulted in significant transient increases in acetylated histone levels in CD4(+) T cells. RMD-treated animals demonstrated plasma viral load measurements for each 2-week treatment cycle that were significantly higher than those in saline control-treated animals during periods of treatment, suggestive of RMD-induced viral reactivation. However, plasma virus rebound was indistinguishable between RMD-treated and control-treated animals for a subset of animals released from cART. These findings suggest that HDACi drugs, such as RMD, can reactivate residual virus in the presence of suppressive antiviral therapy and may be a valuable component of a comprehensive HIV functional cure/eradication strategy.


Assuntos
Depsipeptídeos/uso terapêutico , Inibidores de Histona Desacetilases/uso terapêutico , Macaca mulatta/virologia , RNA Viral/sangue , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Carga Viral/efeitos dos fármacos , Acetilação , Animais , Terapia Antirretroviral de Alta Atividade , Linfócitos T CD4-Positivos/metabolismo , Depsipeptídeos/farmacocinética , Inibidores de Histona Desacetilases/farmacocinética , Histonas/metabolismo , Viremia/tratamento farmacológico , Ativação Viral/efeitos dos fármacos
16.
Retrovirology ; 12: 49, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26076651

RESUMO

BACKGROUND: SIVmac239 is a commonly used virus in non-human primate models of HIV transmission and pathogenesis. Previous studies identified four suboptimal nucleotides in the SIVmac239 genome, which putatively inhibit its replicative capacity. Since all four suboptimal changes revert to the optimal nucleotide consensus sequence during viral replication in vitro and in vivo, we sought to eliminate the variability of generating these mutations de novo and increase the overall consistency of viral replication by introducing the optimal nucleotides directly to the infectious molecular clone. RESULTS: Using site directed mutagenesis of the full-length/nef-open SIVmac239 clone, we reverted all four nucleotides to the consensus/optimal base to generate SIVmac239Opt and subsequently tested its infectivity and replicative capacity in vitro and in vivo. In primary and cell line cultures, we observed that the optimized virus displayed consistent modest but not statistically significant increases in replicative kinetics compared to wild type. In vivo, SIVmac239Opt replicated to high peak titers with an average of 1.2 × 10(8) viral RNA copies/ml at day 12 following intrarectal challenge, reaching set-point viremia of 1.2 × 10(6) viral RNA copies/ml by day 28. Although the peak and set point viremia means were not statistically different from the original "wild type" SIVmac239, viral load variation at set point was greater for SIVmac239WT compared to SIVmac239Opt (p = 0.0015) demonstrating a greater consistency of the optimized virus. Synonymous mutations were added to the integrase gene of SIVmac239Opt to generate a molecular tag consisting of ten genetically distinguishable viral variants referred to as SIVmac239OptX (Del Prete et al., J Virol. doi: 10.1128/JVI.01026-14 , 2014). Replication dynamics in vitro of these optimized clones were not statistically different from the parental clones. Interestingly, the consistently observed rapid reversion of the primer binding site suboptimal nucleotide is not due to viral RT error but is changed post-integration of a mismatched base via host proofreading mechanisms. CONCLUSIONS: Overall, our results demonstrate that SIVmac239Opt is a functional alternative to parental SIVmac239 with marginally faster replication dynamics and with increased replication uniformity providing a more consistent and reproducible infection model in nonhuman primates.


Assuntos
Nucleotídeos/genética , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/fisiologia , Replicação Viral , Animais , Células Cultivadas , Modelos Animais de Doenças , Macaca mulatta , Mutagênese Sítio-Dirigida , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Carga Viral , Viremia , Virulência
17.
Antimicrob Agents Chemother ; 58(11): 6790-806, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25182644

RESUMO

Nonhuman primate models are needed for evaluations of proposed strategies targeting residual virus that persists in HIV-1-infected individuals receiving suppressive combination antiretroviral therapy (cART). However, relevant nonhuman primate (NHP) models of cART-mediated suppression have proven challenging to develop. We used a novel three-class, six-drug cART regimen to achieve durable 4.0- to 5.5-log reductions in plasma viremia levels and declines in cell-associated viral RNA and DNA in blood and tissues of simian immunodeficiency virus SIVmac239-infected Indian-origin rhesus macaques, then evaluated the impact of treatment with the histone deacetylase inhibitor (HDACi) suberoylanilide hydroxamic acid (SAHA; Vorinostat) on the residual virus pool. Ex vivo SAHA treatment of CD4(+) T cells obtained from cART-suppressed animals increased histone acetylation and viral RNA levels in culture supernatants. cART-suppressed animals each received 84 total doses of oral SAHA. We observed SAHA dose-dependent increases in acetylated histones with evidence for sustained modulation as well as refractoriness following prolonged administration. In vivo virologic activity was demonstrated based on the ratio of viral RNA to viral DNA in peripheral blood mononuclear cells, a presumptive measure of viral transcription, which significantly increased in SAHA-treated animals. However, residual virus was readily detected at the end of treatment, suggesting that SAHA alone may be insufficient for viral eradication in the setting of suppressive cART. The effects observed were similar to emerging data for repeat-dose SAHA treatment of HIV-infected individuals on cART, demonstrating the feasibility, utility, and relevance of NHP models of cART-mediated suppression for in vivo assessments of AIDS virus functional cure/eradication approaches.


Assuntos
Antirretrovirais/uso terapêutico , Inibidores de Histona Desacetilases/uso terapêutico , Ácidos Hidroxâmicos/uso terapêutico , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Acetilação/efeitos dos fármacos , Animais , Linfócitos T CD4-Positivos/efeitos dos fármacos , Modelos Animais de Doenças , Quimioterapia Combinada , Histonas/metabolismo , Macaca mulatta , RNA Viral/sangue , RNA Viral/genética , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Carga Viral/efeitos dos fármacos , Vorinostat
18.
Cell Host Microbe ; 16(3): 412-8, 2014 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-25211081

RESUMO

Infection of macaques with chimeric viruses based on SIVMAC but expressing the HIV-1 envelope (Env) glycoproteins (SHIVs) remains the most powerful model for evaluating prevention and therapeutic strategies against AIDS. Unfortunately, only a few SHIVs are currently available. Furthermore, their generation has required extensive adaptation of the HIV-1 Env sequences in macaques so they may not accurately represent HIV-1 Env proteins circulating in humans, potentially limiting their translational utility. We developed a strategy for generating large numbers of SHIV constructs expressing Env proteins from newly transmitted HIV-1 strains. By inoculating macaques with cocktails of multiple SHIV variants, we selected SHIVs that can replicate and cause AIDS-like disease in immunologically intact rhesus macaques without requiring animal-to-animal passage. One of these SHIVs could be transmitted mucosally. We demonstrate the utility of the SHIVs generated by this method for evaluating neutralizing antibody administration as a protection against mucosal SHIV challenge.


Assuntos
Infecções por HIV/virologia , HIV-1/genética , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Animais , Anticorpos Neutralizantes/imunologia , Modelos Animais de Doenças , Expressão Gênica , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , Infecções por HIV/transmissão , HIV-1/metabolismo , Humanos , Macaca , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/transmissão , Vírus da Imunodeficiência Símia/metabolismo , Vírus da Imunodeficiência Símia/patogenicidade , Cultura de Vírus , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo
19.
J Virol ; 88(14): 8077-90, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24807714

RESUMO

Following mucosal human immunodeficiency virus type 1 transmission, systemic infection is established by one or only a few viral variants. Modeling single-variant, mucosal transmission in nonhuman primates using limiting-dose inoculations with a diverse simian immunodeficiency virus isolate stock may increase variability between animals since individual variants within the stock may have substantial functional differences. To decrease variability between animals while retaining the ability to enumerate transmitted/founder variants by sequence analysis, we modified the SIVmac239 clone to generate 10 unique clones that differ by two or three synonymous mutations (molecular tags). Transfection- and infection-derived virus stocks containing all 10 variants showed limited phenotypic differences in 9 of the 10 clones. Twenty-nine rhesus macaques were challenged intrarectally or intravenously with either a single dose or repeated, limiting doses of either stock. The proportion of each variant within each inoculum and in plasma from infected animals was determined by using a novel real-time single-genome amplification assay. Each animal was infected with one to five variants, the number correlating with the dose. Longitudinal sequence analysis revealed that the molecular tags are highly stable with no reversion to the parental sequence detected in >2 years of follow-up. Overall, the viral stocks are functional and mucosally transmissible and the number of variants is conveniently discernible by sequence analysis of a small amplicon. This approach should be useful for tracking individual infection events in preclinical vaccine evaluations, long-term viral reservoir establishment/clearance research, and transmission/early-event studies. Importance: Human immunodeficiency virus type 1 transmission is established by one or only a few viral variants. Modeling of limited variant transmission in nonhuman primates with a diverse simian immunodeficiency virus isolate stock may increase the variability between animals because of functional differences in the individual variants within the stock. To decrease such variability while retaining the ability to distinguish and enumerate transmitted/founder variants by sequence analysis, we generated a viral stock with 10 sequence-identifiable but otherwise genetically identical variants. This virus was characterized in vitro and in vivo and shown to allow discrimination of distinct transmission events. This approach provides a novel nonhuman primate challenge system for the study of viral transmission, evaluation of vaccines and other prevention approaches, and characterization of viral reservoirs and strategies to target them.


Assuntos
Variação Genética , Plasma/virologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/classificação , Vírus da Imunodeficiência Símia/isolamento & purificação , Animais , Modelos Animais de Doenças , Genótipo , Estudos Longitudinais , Macaca mulatta , RNA Viral/genética , Análise de Sequência de DNA , Vírus da Imunodeficiência Símia/genética
20.
Nature ; 502(7469): 100-4, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-24025770

RESUMO

Established infections with the human and simian immunodeficiency viruses (HIV and SIV, respectively) are thought to be permanent with even the most effective immune responses and antiretroviral therapies only able to control, but not clear, these infections. Whether the residual virus that maintains these infections is vulnerable to clearance is a question of central importance to the future management of millions of HIV-infected individuals. We recently reported that approximately 50% of rhesus macaques (RM; Macaca mulatta) vaccinated with SIV protein-expressing rhesus cytomegalovirus (RhCMV/SIV) vectors manifest durable, aviraemic control of infection with the highly pathogenic strain SIVmac239 (ref. 5). Here we show that regardless of the route of challenge, RhCMV/SIV vector-elicited immune responses control SIVmac239 after demonstrable lymphatic and haematogenous viral dissemination, and that replication-competent SIV persists in several sites for weeks to months. Over time, however, protected RM lost signs of SIV infection, showing a consistent lack of measurable plasma- or tissue-associated virus using ultrasensitive assays, and a loss of T-cell reactivity to SIV determinants not in the vaccine. Extensive ultrasensitive quantitative PCR and quantitative PCR with reverse transcription analyses of tissues from RhCMV/SIV vector-protected RM necropsied 69-172 weeks after challenge did not detect SIV RNA or DNA sequences above background levels, and replication-competent SIV was not detected in these RM by extensive co-culture analysis of tissues or by adoptive transfer of 60 million haematolymphoid cells to naive RM. These data provide compelling evidence for progressive clearance of a pathogenic lentiviral infection, and suggest that some lentiviral reservoirs may be susceptible to the continuous effector memory T-cell-mediated immune surveillance elicited and maintained by cytomegalovirus vectors.


Assuntos
Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/imunologia , Animais , Citomegalovirus/genética , Citomegalovirus/imunologia , Feminino , Macaca mulatta , Masculino , Dados de Sequência Molecular , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Fatores de Tempo , Vacinas Atenuadas/imunologia , Carga Viral , Replicação Viral/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...