Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
DNA Repair (Amst) ; 139: 103680, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38663144

RESUMO

Endonuclease VIII-like 3 (NEIL3) is a versatile DNA glycosylase that repairs a diverse array of chemical modifications to DNA. Unlike other glycosylases, NEIL3 has a preference for lesions within single-strand DNA and at single/double-strand DNA junctions. Beyond its canonical role in base excision repair of oxidized DNA, NEIL3 initiates replication-dependent interstrand DNA crosslink repair as an alternative to the Fanconi Anemia pathway. This review outlines our current understanding of NEIL3's biological functions, role in disease, and three-dimensional structure as it pertains to substrate specificity and catalytic mechanism.

2.
JACC Basic Transl Sci ; 9(1): 78-96, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38362342

RESUMO

Clinical studies have shown that α1-adrenergic receptor antagonists (α-blockers) are associated with increased heart failure risk. The mechanism underlying that hazard and whether it arises from direct inhibition of cardiomyocyte α1-ARs or from systemic effects remain unclear. To address these issues, we created a mouse with cardiomyocyte-specific deletion of the α1A-AR subtype and found that it experienced 70% mortality within 7 days of myocardial infarction driven, in part, by excessive activation of necroptosis. We also found that patients taking α-blockers at our center were at increased risk of death after myocardial infarction, providing clinical correlation for our translational animal models.

3.
Nat Commun ; 13(1): 1923, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35395848

RESUMO

The cytokine IFNγ differentially impacts on tumors upon immune checkpoint blockade (ICB). Despite our understanding of downstream signaling events, less is known about regulation of its receptor (IFNγ-R1). With an unbiased genome-wide CRISPR/Cas9 screen for critical regulators of IFNγ-R1 cell surface abundance, we identify STUB1 as an E3 ubiquitin ligase for IFNγ-R1 in complex with its signal-relaying kinase JAK1. STUB1 mediates ubiquitination-dependent proteasomal degradation of IFNγ-R1/JAK1 complex through IFNγ-R1K285 and JAK1K249. Conversely, STUB1 inactivation amplifies IFNγ signaling, sensitizing tumor cells to cytotoxic T cells in vitro. This is corroborated by an anticorrelation between STUB1 expression and IFNγ response in ICB-treated patients. Consistent with the context-dependent effects of IFNγ in vivo, anti-PD-1 response is increased in heterogenous tumors comprising both wildtype and STUB1-deficient cells, but not full STUB1 knockout tumors. These results uncover STUB1 as a critical regulator of IFNγ-R1, and highlight the context-dependency of STUB1-regulated IFNγ signaling for ICB outcome.


Assuntos
Interferon gama , Neoplasias , Receptores de Interferon , Ubiquitina-Proteína Ligases , Humanos , Inibidores de Checkpoint Imunológico , Interferon gama/metabolismo , Neoplasias/imunologia , Receptores de Interferon/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Receptor de Interferon gama
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...