Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 2515, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291088

RESUMO

The species distributions migration poleward and into higher altitudes in a warming climate is especially concerning for economically important insect pest species, as their introduction can potentially occur in places previously considered unsuitable for year-round survival. We explore the expansion of the climatically suitable areas for a horticultural pest, the Mediterranean fruit fly (medfly) Ceratitis capitata (Diptera, Tephritidae), with an emphasis on Europe and California. We reviewed and refined a published CLIMEX model for C. capitata, taking into consideration new records in marginal locations, with a particular focus on Europe. To assess the model fit and to aid in interpreting the meaning of the new European distribution records, we used a time series climate dataset to explore the temporal patterns of climate suitability for C. capitata from 1970 to 2019. At selected bellwether sites in Europe, we found statistically significant trends in increasing climate suitability, as well as a substantial northward expansion in the modelled potential range. In California, we also found a significant trend of northward and altitudinal expansion of areas suitable for C. capitata establishment. These results provide further evidence of climate change impacts on species distributions and the need for innovative responses to increased invasion threats.


Assuntos
Ceratitis capitata , Tephritidae , Animais , Ceratitis capitata/fisiologia , Tephritidae/fisiologia , Europa (Continente) , Geografia , Mudança Climática
2.
Curr Opin Insect Sci ; 62: 101164, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38244690

RESUMO

Global climate changes undermine the effectiveness of 'set and forget' phytosanitary regulations. Uncertainties in future greenhouse gas emission profiles render it impossible to accurately forecast future climate, thus limiting the ability to make long-term biosecurity policy decisions. Agile adaptive biosecurity frameworks are necessary to address these climatic uncertainties and to effectively manage current and emerging threats. This paper provides opinions on these issues and presents a case study focusing on the threats posed by Aleurocanthus woglumi (citrus blackfly) to Europe. It delves into the biology of the species, its preferred hosts, and how climate change could affect its spread. Utilizing a bioclimatic niche model, the paper estimates the potential distribution of A. woglumi in Europe under recent historical and medium-term future conditions, revealing a potential expansion of its range into higher elevations and more northern regions by the year 2050. The main aim is to leverage the results to showcase the system's sensitivity to likely emission scenarios, essentially stress-testing for potential emerging threats to biosecurity policies and phytosanitary regulations. The results underscore the significance of considering global change factors in pest risk assessment and phytosanitary regulations for effective risk mitigation. Consequently, adaptive biosecurity measures are essential, encompassing horizon scanning, enhanced targeted surveillance, periodic updates of risk assessments, and adjustments to regulations. For instance, biosecurity risk management could involve establishing a set of trigger conditions to prompt updates of risk assessments, such as identifying a zone where the confirmed establishment of a pest signifies a significant change in the pest risk profile. For jurisdictions containing areas modeled as being climatically suitable under historical climates or future climate scenarios, we caution against importing untreated host materials from regions that are likely to become suitable habitats for A. woglumi in the future. Moreover, it is important to consider both present and future climate change scenarios when making decisions to effectively address the threats posed by invasive species. In the case of highly impactful invasives, investing in preemptive biological control measures may prove to be a prudent choice.


Assuntos
Biosseguridade , Mudança Climática , Animais , Espécies Introduzidas , Ecossistema , Medição de Risco
3.
Sci Total Environ ; 880: 163230, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37023813

RESUMO

The crop-growing region of Western Australia characterized by a Mediterranean-type climate is projected to become warmer and drier. Appropriate selection of crop sequences will be of importance to cope with these climatic changes for this largest grain-producing region of Australia. Through linking a widely used crop model (APSIM), 26 General Circulation Models (GCMs) with one Shared Socioeconomic Pathway (SSP585) and economic analysis, we explored how the climate change would affect dryland wheat cropping and whether/how long fallow (the practice of leaving a field out of production for an entire growing season) could be integrated into wheat cropping system in Western Australia. The potential adaptation of long fallow into wheat system was assessed with four fixed rotations (fallow-wheat, fallow-wheat-wheat, fallow-wheat-wheat-wheat, and fallow-wheat-wheat-wheat-wheat) and four flexible sowing rule-based rotations (the land was fallowed if sowing rule was not met), compared with continuous wheat. The simulation results at four representing locations show that climate change would have negative impacts on both yield and economic return of continuous wheat cropping in Western Australia. Wheat after fallow out-yielded and out-profited wheat after wheat under future climate. But integrating fallow into wheat cropping systems with the above fixed rotations would lead to yield and economic loss. By contrast, cropping systems in which fallowing took place when sowing condition could not be met at a certain time would achieve comparable yield and economic return to continuous wheat, with wheat yield being only 5 % less than continuous wheat and the gross margin being $12 ha-1 more than continuous wheat averaged across locations. We highlight strategic integration of long fallow into cropping system in a dryland Mediterranean-type environment would have a great potential to cope with future climate change. These findings can be extended into other Mediterranean-type cropping regions in Australia and beyond.


Assuntos
Agricultura , Mudança Climática , Grão Comestível , Aclimatação , Agricultura/métodos , Austrália , Triticum
4.
New Phytol ; 232(3): 1506-1518, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34338336

RESUMO

Fungal plant pathogens are of economic and ecological importance to global agriculture and natural ecosystems. Long-distance atmospheric dispersal of fungal spores (LAD) can pose threats to agricultural and native vegetation lands. An understanding of such patterns of fungal spore dispersal and invasion pathways can provide valuable insights into plant protection. Spore traits affect their dispersal abilities. We propose a general trait-based framework for modelling LAD to reveal dispersal patterns and pathways, and assess subsequent threats of arrival (TOA) quantitatively in the context of biosecurity. To illustrate the framework, we present a study of Australia and its surrounding land masses. The overall dispersal pattern covered almost the entire continent of Australia. Fungal spores in the size class of 10 and 20 µm (aerodynamic diameter) posed the greatest TOA. Our study shows the effects of morphological traits on these potential TOA, and how they varied between source regions, size classes, and seasons. Our framework revealed spore dispersal patterns and pathways. It also facilitates comparisons of spatio-temporal dispersal dynamics among fungal classes, gaining insights into atmospheric long-distance dispersal of fungi as a whole, and provides a basis for assessing fungal pest threats in potential source regions based on easily measured spore characteristics.


Assuntos
Ecossistema , Fungos , Agricultura , Estações do Ano , Esporos Fúngicos
5.
Insects ; 12(6)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070564

RESUMO

The brown marmorated stink bug, Halyomorpha halys (Stål) (Hemiptera: Pentatomidae), is native to northeast Asia. It was accidentally introduced to Europe and North America, where it has become a key pest, feeding on many important crops. Previous eco-climatic niche modelling indicates that H. halys could expand its distribution vastly, and numerous border interceptions of this pest in many countries, including Australia and New Zealand, indicate that it would be prudent to prepare for its eventual arrival. Similar niche modelling was used to assess the potential distribution of Trissolcus japonicus (Ashmead) (Hymenoptera: Scelionidae), the key parasitoid of H. halys in China. Trissolcus mitsukurii (Ashmead) is one of the main parasitoids of H. halys in Japan. It is known to have existed in Australia since the early 20th century and was also specifically introduced to Australia in the 1960s, and it has now also invaded Italy. We used CLIMEX to model the climatic niche of T. mitsukurii to estimate its global potential distribution. We found that T. mitsukurii should be able to significantly expand its range globally, and that there is a significant degree of overlap in the projected ranges of T. mitsukurii, T. japonicus and H. halys. From a biological control perspective, this implies that the two Trissolcus species may be able to help mitigate the potential impacts of H. halys.

6.
Anim Sci J ; 92(1): e13505, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33438791

RESUMO

We evaluated the effects of feeding high volumes of milk replacer on growth and reproductive performances in Japanese black heifers. Fifty-one heifers were fed milk replacer at 9 L/day for 60 days (9 L × 60 days; n = 18) or 41 days (9 L × 41 days; n = 15), or at 7 L/day for 40 days (7 L × 40 days; n = 18). Artificial insemination (AI) was performed on heifers with ≥270 kg body weight and ≥116 cm body height at 300 days of age. The age at the first AI was 0.35 month later for 7 L × 40 days than the other groups (p < .01). However, age at calving did not differ among treatments (22.1 months). The interval from the first AI to pregnancy tended to be ~2 months longer for the 9 L × 60 days than the other groups (p = .07). Our results showed that feeding high volumes of milk replacer may reduce the age at calving via an improved rate of growth. In addition, we propose that feeding a maximum of 7 L milk replacer for 40 days may be the most appropriate rearing regime because the success of pregnancy per AI may be reduced in calves fed a maximum of 9 L for 41 and 60 days.


Assuntos
Ração Animal , Bovinos/sangue , Bovinos/fisiologia , Leite , Reprodução , Fatores Etários , Animais , Glicemia/metabolismo , Bovinos/crescimento & desenvolvimento , Dieta/veterinária , Ácidos Graxos não Esterificados/sangue , Feminino , Transportador de Glucose Tipo 1/sangue , Inseminação Artificial/veterinária , Insulina/sangue , Fator de Crescimento Insulin-Like I/metabolismo , Hormônio Luteinizante/sangue , Gravidez , Fatores de Tempo
7.
Foods ; 10(2)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494323

RESUMO

A study was conducted using maize samples collected from different agroecological zones of Kenya (n = 471) and Tanzania (n = 100) during the 2013 maize harvest season to estimate a relationship between aflatoxin B1 concentration and occurrence with weather conditions during the growing season. The toxins were analysed by the ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method. Aflatoxin B1 incidence ranged between 0-100% of samples in different regions with an average value of 29.4% and aflatoxin concentrations of up to 6075 µg/kg recorded in one sample. Several regression techniques were explored. Random forests achieved the highest overall accuracy of 80%, while the accuracy of a logistic regression model was 65%. Low rainfall occurring during the early stage of the maize plant maturing combined with high temperatures leading up to full maturity provide warning signs of aflatoxin contamination. Risk maps for the two countries for the 2013 season were generated using both random forests and logistic regression models.

8.
Sci Rep ; 10(1): 22049, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33328547

RESUMO

Projected climate changes are thought to promote emerging infectious diseases, though to date, evidence linking climate changes and such diseases in plants has not been available. Cassava is perhaps the most important crop in Africa for smallholder farmers. Since the late 1990's there have been reports from East and Central Africa of pandemics of begomoviruses in cassava linked to high abundances of whitefly species within the Bemisia tabaci complex. We used CLIMEX, a process-oriented climatic niche model, to explore if this pandemic was linked to recent historical climatic changes. The climatic niche model was corroborated with independent observed field abundance of B. tabaci in Uganda over a 13-year time-series, and with the probability of occurrence of B. tabaci over 2 years across the African study area. Throughout a 39-year climate time-series spanning the period during which the pandemics emerged, the modelled climatic conditions for B. tabaci improved significantly in the areas where the pandemics had been reported and were constant or decreased elsewhere. This is the first reported case where observed historical climate changes have been attributed to the increase in abundance of an insect pest, contributing to a crop disease pandemic.


Assuntos
Aclimatação , Begomovirus , Mudança Climática , Hemípteros/fisiologia , Manihot , Doenças das Plantas , Animais , Manihot/parasitologia , Manihot/virologia , Doenças das Plantas/parasitologia , Doenças das Plantas/virologia , Uganda
9.
Glob Chang Biol ; 26(7): 4056-4067, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32237246

RESUMO

Reducing the number of tillers per plant using a tiller inhibition (tin) gene has been considered as an important trait for wheat production in dryland environments. We used a spatial analysis approach with a daily time-step coupled radiation and transpiration efficiency model to simulate the impact of the reduced-tillering trait on wheat yield under different climate change scenarios across Australia's arable land. Our results show a small but consistent yield advantage of the reduced-tillering trait in the most water-limited environments both under current and likely future conditions. Our climate scenarios show that whilst elevated [CO2 ] (e[CO2 ]) alone might limit the area where the reduced-tillering trait is advantageous, the most likely climate scenario of e[CO2 ] combined with increased temperature and reduced rainfall consistently increased the area where restricted tillering has an advantage. Whilst long-term average yield advantages were small (ranged from 31 to 51 kg ha-1  year-1 ), across large dryland areas the value is large (potential cost-benefits ranged from Australian dollar 23 to 60 MIL/year). It seems therefore worthwhile to further explore this reduced-tillering trait in relation to a range of different environments and climates, because its benefits are likely to grow in future dry environments where wheat is grown around the world.


Assuntos
Mudança Climática , Triticum , Austrália , Fenótipo
10.
PLoS One ; 14(8): e0220601, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31412052

RESUMO

Black leaf streak disease, or black Sigatoka, is caused by the fungus Pseudocercospora fijiensis, and has been identified as a major constraint to global production of banana and plantain. We fitted a climatic niche model (CLIMEX) for P. fijiensis to gain an understanding of the patterns of climate suitability, and hence hazard from this disease. We then calibrated the climate suitability patterns against the results of an expert elicitation of disease pressure patterns. We found a moderately strong non-linear relationship between modelled climate suitability for P.°fijiensis and the expert ratings for disease pressure. The strength of the relationship provides a cross-validation between the CLIMEX model and the expert elicitation process. The bulk of global banana production experiences high potential threat from P. fijiensis, and the higher yielding areas for banana and plantain production are at greatest threat. By explicitly considering the role of irrigation we have been able to identify how strategic irrigation could be used to support banana production in areas that are at low risk from P. fijiensis.


Assuntos
Ascomicetos , Musa/microbiologia , Micoses/microbiologia , Doenças das Plantas/microbiologia , Plantago/microbiologia , Agricultura
11.
J Pest Sci (2004) ; 90(2): 459-477, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28275325

RESUMO

Chilo partellus is a major crop pest in Asia and Africa, and has recently spread to the Mediterranean region. Knowledge of its potential distribution can inform biosecurity policies aimed at limiting its further spread and efforts to reduce its impact in areas that are already invaded. Three models of the potential distribution of this insect have been published, each with significant shortcomings. We re-parameterized an existing CLIMEX model to address some parameter inconsistencies and to improve the fit to the known distribution of C. partellus. The resulting model fits the known distribution better than previous models, highlights additional risks in equatorial regions and reduces modelled risks in wet and extremely dry regions. We bring new insights into the role of irrigation in the potential spread of this invasive insect and compare its potential distribution with the present known distribution of its hosts. We also distinguish regions that are suitable for supporting persistent populations from those that may be at risk from ephemeral populations during favourable seasons. We present one of the first demonstrations of a new capability in CLIMEX to automatically estimate parameter sensitivity and model uncertainty. Our CLIMEX model highlights the substantial invasion risk posed by C. partellus to cropping regions in the Americas, Australia, China, Europe, New Zealand and West Africa. Its broad host range and reported impacts suggest that it should be a pest of significant concern to biosecurity agencies in these presently uninvaded regions.

12.
PLoS One ; 12(3): e0173265, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28296903

RESUMO

The cassava mealybug is a clear and present threat to the food security and livelihoods of some of the world's most impoverished citizens. Niche models, such as CLIMEX, are useful tools to indicate where and when such threats may extend, and can assist with planning for biosecurity and the management of pest invasions. They can also contribute to bioeconomic analyses that underpin the allocation of resources to alleviate poverty. Because species can invade and establish in areas with climates that are different from those that are found in their native range, it is essential to define robust range-limiting mechanisms in niche models. To avoid spurious results when applied to novel climates, it is necessary to employ cross-validation techniques spanning different knowledge domains (e.g., distribution data, experimental results, phenological observations). We build upon and update a CLIMEX niche model by Parsa et al. (PloS ONE 7: e47675), correcting inconsistent parameters and re-fitting it based on a careful examination of geographical distribution data and relevant literature. Further, we consider the role of irrigation, the known distribution of cassava production and a targeted review of satellite imagery to refine, validate and interpret our model and results. In so doing, we bring new insights into the potential spread of this invasive insect, enabling us to identify potential bio-security threats and biological control opportunities. The fit of the revised model is improved, particularly in relation to the wet and dry limits to establishment, and the parameter values are biologically plausible and accord with published scientific literature.


Assuntos
Abastecimento de Alimentos , Hemípteros/fisiologia , Animais
13.
Glob Chang Biol ; 23(4): 1661-1674, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27596590

RESUMO

Globally, Phytophthora cinnamomi is listed as one of the 100 worst invasive alien species and active management is required to reduce impact and prevent spread in both horticulture and natural ecosystems. Conversely, there are regions thought to be suitable for the pathogen where no disease is observed. We developed a climex model for the global distribution of P. cinnamomi based on the pathogen's response to temperature and moisture and by incorporating extensive empirical evidence on the presence and absence of the pathogen. The climex model captured areas of climatic suitability where P. cinnamomi occurs that is congruent with all available records. The model was validated by the collection of soil samples from asymptomatic vegetation in areas projected to be suitable by the model for which there were few records. DNA was extracted, and the presence or absence of P. cinnamomi was determined by high-throughput sequencing (HTS). While not detected using traditional isolation methods, HTS detected P. cinnamomi at higher elevations in eastern Australia and central Tasmania as projected by the climex model. Further support for the climex model was obtained using the large data set from south-west Australia where the proportion of positive records in an area is related to the Ecoclimatic Index value for the same area. We provide for the first time a comprehensive global map of the current P. cinnamomi distribution, an improved climex model of the distribution, and a projection to 2080 of the distribution with predicted climate change. This information provides the basis for more detailed regional-scale modelling and supports risk assessment for governments to plan management of this important soil-borne plant pathogen.


Assuntos
Mudança Climática , Phytophthora/patogenicidade , Doenças das Plantas , Austrália , Dinâmica Populacional , Austrália do Sul , Tasmânia
14.
PLoS One ; 10(9): e0132807, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26325680

RESUMO

Pest Risk Assessments (PRAs) routinely employ climatic niche models to identify endangered areas. Typically, these models consider only climatic factors, ignoring the 'Swiss Cheese' nature of species ranges due to the interplay of climatic and habitat factors. As part of a PRA conducted for the European and Mediterranean Plant Protection Organization, we developed a climatic niche model for Parthenium hysterophorus, explicitly including the effects of irrigation where it was known to be practiced. We then downscaled the climatic risk model using two different methods to identify the suitable habitat types: expert opinion (following the EPPO PRA guidelines) and inferred from the global spatial distribution. The PRA revealed a substantial risk to the EPPO region and Central and Western Africa, highlighting the desirability of avoiding an invasion by P. hysterophorus. We also consider the effects of climate change on the modelled risks. The climate change scenario indicated the risk of substantial further spread of P. hysterophorus in temperate northern hemisphere regions (North America, Europe and the northern Middle East), and also high elevation equatorial regions (Western Brazil, Central Africa, and South East Asia) if minimum temperatures increase substantially. Downscaling the climate model using habitat factors resulted in substantial (approximately 22-53%) reductions in the areas estimated to be endangered. Applying expert assessments as to suitable habitat classes resulted in the greatest reduction in the estimated endangered area, whereas inferring suitable habitats factors from distribution data identified more land use classes and a larger endangered area. Despite some scaling issues with using a globally conformal Land Use Systems dataset, the inferential downscaling method shows promise as a routine addition to the PRA toolkit, as either a direct model component, or simply as a means of better informing an expert assessment of the suitable habitat types.


Assuntos
Asteraceae , Espécies Introduzidas , África do Norte , Asteraceae/fisiologia , Mudança Climática , Ecossistema , Europa (Continente) , Modelos Teóricos , Medição de Risco
15.
Contrib Nephrol ; 186: 33-40, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26283557

RESUMO

A trampoline effect may occur mainly when a buttonhole tract and the vessel flap fail to form a straight line. Certain findings, however, suggest another cause is when the vessel flap is too small. The frequency of the trampoline effect, for example, is lower when a buttonhole tract is created by multiple punctures of the arteriovenous fistula (AVF) vessel than when it is done by one-time puncture of the vessel. Lower frequency of the trampoline effect with multiple punctures of the AVF vessel may be due to enlargement of the initial puncture hole on the vessel every time the vessel is punctured with a sharp needle. Even if aiming at exactly the same point on the AVF vessel every time, the actual puncture point shifts slightly at every puncture, which potentially results in enlargement of the initial hole on the AVF vessel. Moreover, in some patients, continued use of a buttonhole tract for an extended period of time increases the frequency of the trampoline effect. In such cases, reduction of the incidence of the trampoline effect can be achieved by one buttonhole cannulation using a new dull needle with sharp side edges that is used to enlarge the vessel flap. Such single buttonhole cannulation may suggest that the increased frequency of the trampoline effect also potentially occurs in association with gradually diminishing flap size. As a final observation, dull needle insertion into a vessel flap in the reverse direction has been more smoothly achieved than insertion into a vessel flap in the conventional direction. A vessel flap in the reverse direction can be adopted clinically.


Assuntos
Derivação Arteriovenosa Cirúrgica , Cateterismo Periférico/métodos , Falência Renal Crônica/terapia , Agulhas , Punções/instrumentação , Diálise Renal/métodos , Humanos , Punções/métodos
16.
Contrib Nephrol ; 186: 41-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26283558

RESUMO

BACKGROUND: Scab removal is a time-consuming process and often injures the skin at a buttonhole entry site. Incomplete removal of scabs may cause access-related infection. METHODS: In a new procedure, buttonhole entry sites were treated with a moist healing step after hemodialysis, and then a formed scab was wiped off with a microfiber towel during bathing on the night prior to hemodialysis, which was performed on the following day. In the moist healing step, the entry site was disinfected with a diluted povidone-iodine solution (0.1% povidone-iodine solution). RESULTS: When the buttonhole entry sites of the patients were treated with the new procedure, the scabs had already been removed at the buttonhole entry sites, and the sites were covered with a thin transparent membrane. Histological examination showed the thin membrane was stratum corneum, in which nuclei are still seen in keratinocytes. CONCLUSION: By treating the buttonhole entry sites of patients with the wound moist healing method and then rubbing the sites with a microfiber towel during bathing, scabs can be removed without injuring the skin at the sites in advance.


Assuntos
Anti-Infecciosos Locais/uso terapêutico , Derivação Arteriovenosa Cirúrgica , Cateterismo Periférico/métodos , Queratinócitos/patologia , Falência Renal Crônica/terapia , Povidona-Iodo/uso terapêutico , Diálise Renal/métodos , Pele/patologia , Cicatrização , Idoso , Banhos/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
18.
PLoS One ; 10(3): e0119618, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25786260

RESUMO

Helicoverpa armigera has recently invaded South and Central America, and appears to be spreading rapidly. We update a previously developed potential distribution model to highlight the global invasion threat, with emphasis on the risks to the United States. The continued range expansion of H. armigera in Central America is likely to change the invasion threat it poses to North America qualitatively, making natural dispersal from either the Caribbean islands or Mexico feasible. To characterise the threat posed by H. armigera, we collated the value of the major host crops in the United States growing within its modelled potential range, including that area where it could expand its range during favourable seasons. We found that the annual value of crops that would be exposed to H. armigera totalled approximately US$78 billion p.a., with US$843 million p.a. worth growing in climates that are optimal for the pest. Elsewhere, H. armigera has developed broad-spectrum pesticide resistance; meaning that if it invades the United States, protecting these crops from significant production impacts could be challenging. It may be cost-effective to undertake pre-emptive biosecurity activities such as slowing the spread of H. armigera throughout the Americas, improving the system for detecting H. armigera, and methods for rapid identification, especially distinguishing between H. armigera, H. zea and potential H. armigera x H. zea hybrids. Developing biological control programs, especially using inundative techniques with entomopathogens and parasitoids could slow the spread of H. armigera, and reduce selective pressure for pesticide resistance. The rapid spread of H. armigera through South America into Central America suggests that its spread into North America is a matter of time. The likely natural dispersal routes preclude aggressive incursion responses, emphasizing the value of preparatory communication with agricultural producers in areas suitable for invasion by H. armigera.


Assuntos
Distribuição Animal/fisiologia , Controle de Insetos/métodos , Espécies Introduzidas/estatística & dados numéricos , Mariposas/fisiologia , Agricultura/métodos , Animais , Espécies Introduzidas/economia , Espécies Introduzidas/tendências , América do Norte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...