Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21253418

RESUMO

The sharp increase of COVID-19 cases in late 2020 has made Brazil the new epicenter of the ongoing SARS-CoV-2 pandemic. Novel SARS-CoV-2 lineages P.1 and P.2, first identified respectively in Manaus and Rio de Janeiro, have been associated with potentially higher transmission rates and antibody neutralization escape. In this study, we performed a whole-genome sequencing of 185 samples isolated from three out of the five Brazilian regions, including Amazonas (North region), Rio Grande do Norte, Paraiba and Bahia (Northeast region), and Rio de Janeiro (Southeast region) aiming to identify SARS-CoV-2 mutations that could be involved in the surge of COVID19 cases in Brazil. Here, we showed a widespread dispersion of P.1 and P.2 across Brazilian regions. Except for Manaus, P.2 was the predominant lineage identified country-wise. P.2 lineage was estimated to have originated in February, 2020 and has diverged into new clades. Interstate transmission of P.2 was detected since March, but reached its peak in December, 2020 and January, 2021. Transmission of P.1 was also high in December. P.1 origin was inferred to have happened in August 2020. We also confirmed the presence of the variant under investigation (VUI) NP13L, recently described in the southernmost region of Brazil, to have spread across the Northeastern states. P.1, P.2 and NP13L are descended from the ancient B.1.1.28 strain, although during the first phase of the pandemic in Brazil presence of B.1.1.33 strain was also reported. We investigate here the possible occurrence of a new variant of interest descending from B.1.1.33 that also carries the E484K mutation. Indeed, the recurrent report of many novel SARS-CoV-2 genetic variants in Brazil could be due to the absence of effective control measures resulting in high SARS-CoV2 transmission rates. Altogether, our findings provided a landscape of the critical state of SARS-CoV-2 across Brazil and confirm the need to sustain continuous sequencing of the SARS-CoV-2 isolates worldwide in order to early identify novel variants of interest and to monitor for vaccine effectiveness.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20248598

RESUMO

In this study, we report the sequencing of 180 new viral genomes obtained from different municipalities of the state of Rio de Janeiro from April to December 2020. We identified a novel lineage of SARS-CoV-2, originated from B.1.1.28, distinguished by five single-nucleotide variants (SNVs): C100U, C28253U, G28628U, G28975U, and C29754U. The SNV G23012A (E484K), in the receptor-binding domain of Spike protein, was widely spread across the samples. This mutation was previously associated with escape from neutralizing antibodies against SARS-CoV-2. This novel lineage emerged in late July being first detected by us in late October and still mainly restricted to the capital of the state. However, as observed for other strains it can be rapidly spread in the state. The significant increase in the frequency of this lineage raises concerns about public health management and continuous need for genomic surveillance during the second wave of infections. Article Summary LineWe identified a novel circulating lineage of SARS-CoV-2 in the state of Rio de Janeiro Brazil originated from B.1.1.28 lineage.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20231217

RESUMO

Prolonged infection of SARS-CoV-2 represents a challenge to the development of effective public health policies to control the COVID-19 pandemic. The reason why some people have persistent infection and how the virus survives for so long are still not fully understood. For this reason, we aimed to investigate the intra-host evolution of SARS-CoV-2 during persistent infection. Thirty-three patients who remained RT-PCR positive in the nasopharynx for at least 16 days were included in this study. Complete SARS-CoV-2 sequences were obtained for each patient at two time points. Phylogenetic, populational, and computational analysis of viral sequences confirmed persistent infection with evidence for a transmission cluster in health care professionals that shared the same workplace. A high number of missense variants targeting crucial structural and non-structural proteins such as Spike and Helicase was found. Interestingly, longitudinal acquisition of substitutions in Spike protein mapped many SARS-CoV-2 predicted T cell epitopes. Furthermore, the mutational profiles observed were suggestive of RNA editing enzyme activities, indicating innate immune mechanisms of the host cell. Viral quasispecies analysis corroborates persistent infection mainly by increasing richness and nucleotide diversity over time. Altogether, our findings highlight a dynamic and complex landscape of host and pathogen interaction during persistent infection suggesting that the hosts innate immunity shapes the increase of intra-host diversity with possible implications for therapeutic strategies and public health decisions during the COVID-19 pandemic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...