Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
NPJ Vaccines ; 8(1): 149, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794010

RESUMO

COVID-19 vaccines were originally designed based on the ancestral Spike protein, but immune escape of emergent Variants of Concern (VOC) jeopardized their efficacy, warranting variant-proof vaccines. Here, we used preclinical rodent models to establish the cross-protective and cross-neutralizing capacity of adenoviral-vectored vaccines expressing VOC-matched Spike. CoroVaxG.3-D.FR, matched to Delta Plus Spike, displayed the highest levels of nAb to the matched VOC and mismatched variants. Cross-protection against viral infection in aged K18-hACE2 mice showed dramatic differences among the different vaccines. While Delta-targeted vaccines fully protected mice from a challenge with Gamma, a Gamma-based vaccine offered only partial protection to Delta challenge. Administration of CorovaxG.3-D.FR in a prime/boost regimen showed that a booster was able to increase the neutralizing capacity of the sera against all variants and fully protect aged K18-hACE2 mice against Omicron BA.1, as a BA.1-targeted vaccine did. The neutralizing capacity of the sera diminished in all cases against Omicron BA.2 and BA.5. Altogether, the data demonstrate that a booster with a vaccine based on an antigenically distant variant, such as Delta or BA.1, has the potential to protect from a wider range of SARS-CoV-2 lineages, although careful surveillance of breakthrough infections will help to evaluate combination vaccines targeting antigenically divergent variants yet to emerge.

2.
mBio ; 14(2): e0002323, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36786587

RESUMO

Fijiviruses replicate and package their genomes within viroplasms in a process involving RNA-RNA and RNA-protein interactions. Here, we demonstrate that the 24 C-terminal residues (C-arm) of the P9-1 major viroplasm protein of the mal de Río Cuarto virus (MRCV) are required for its multimerization and the formation of viroplasm-like structures. Using an integrative structural approach, the C-arm was found to be dispensable for P9-1 dimer assembly but essential for the formation of pentamers and hexamers of dimers (decamers and dodecamers), which favored RNA binding. Although both P9-1 and P9-1ΔC-arm catalyzed ATP with similar activities, an RNA-stimulated ATPase activity was only detected in the full-length protein, indicating a C-arm-mediated interaction between the ATP catalytic site and the allosteric RNA binding sites in the (do)decameric assemblies. A stronger preference to bind phosphate moieties in the decamer was predicted, suggesting that the allosteric modulation of ATPase activity by RNA is favored in this structural conformation. Our work reveals the structural versatility of a fijivirus major viroplasm protein and provides clues to its mechanism of action. IMPORTANCE The mal de Río Cuarto virus (MRCV) causes an important maize disease in Argentina. MRCV replicates in several species of Gramineae plants and planthopper vectors. The viral factories, also called viroplasms, have been studied in detail in animal reovirids. This work reveals that a major viroplasm protein of MRCV forms previously unidentified structural arrangements and provides evidence that it may simultaneously adopt two distinct quaternary assemblies. Furthermore, our work uncovers an allosteric communication between the ATP and RNA binding sites that is favored in the multimeric arrangements. Our results contribute to the understanding of plant reovirids viroplasm structure and function and pave the way for the design of antiviral strategies for disease control.


Assuntos
Reoviridae , Compartimentos de Replicação Viral , Animais , RNA/metabolismo , Reoviridae/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo
3.
Comput Struct Biotechnol J ; 20: 5098-5114, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36187929

RESUMO

U-Omp19 is a bacterial protease inhibitor from Brucella abortus that inhibits gastrointestinal and lysosomal proteases, enhancing the half-life and immunogenicity of co-delivered antigens. U-Omp19 is a novel adjuvant that is in preclinical development with various vaccine candidates. However, the molecular mechanisms by which it exerts these functions and the structural elements responsible for these activities remain unknown. In this work, a structural, biochemical, and functional characterization of U-Omp19 is presented. Dynamic features of U-Omp19 in solution by NMR and the crystal structure of its C-terminal domain are described. The protein consists of a compact C-terminal beta-barrel domain and a flexible N-terminal domain. The latter domain behaves as an intrinsically disordered protein and retains the full protease inhibitor activity against pancreatic elastase, papain and pepsin. This domain also retains the capacity to induce CD8+ T cells in vivo of U-Omp19. This information may lead to future rationale vaccine designs using U-Omp19 as an adjuvant to deliver other proteins or peptides in oral formulations against infectious diseases, as well as to design strategies to incorporate modifications in its structure that may improve its adjuvanticity.

4.
Sci Adv ; 7(48): eabh1097, 2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34818032

RESUMO

Phytochromes constitute a widespread photoreceptor family that typically interconverts between two photostates called Pr (red light­absorbing) and Pfr (far-red light­absorbing). The lack of full-length structures solved at the (near-)atomic level in both pure Pr and Pfr states leaves gaps in the structural mechanisms involved in the signal transmission pathways during the photoconversion. Here, we present the crystallographic structures of three versions from the plant pathogen Xanthomonas campestris virulence regulator XccBphP bacteriophytochrome, including two full-length proteins, in the Pr and Pfr states. The structures show a reorganization of the interaction networks within and around the chromophore-binding pocket, an α-helix/ß-sheet tongue transition, and specific domain reorientations, along with interchanging kinks and breaks at the helical spine as a result of the photoswitching, which subsequently affect the quaternary assembly. These structural findings, combined with multidisciplinary studies, allow us to describe the signaling mechanism of a full-length bacterial phytochrome at the atomic level.

5.
J Biol Chem ; 297(4): 101175, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34499924

RESUMO

The spike protein is the main protein component of the SARS-CoV-2 virion surface. The spike receptor-binding motif mediates recognition of the human angiotensin-converting enzyme 2 receptor, a critical step in infection, and is the preferential target for spike-neutralizing antibodies. Posttranslational modifications of the spike receptor-binding motif have been shown to modulate viral infectivity and host immune response, but these modifications are still being explored. Here we studied asparagine deamidation of the spike protein, a spontaneous event that leads to the appearance of aspartic and isoaspartic residues, which affect both the protein backbone and its charge. We used computational prediction and biochemical experiments to identify five deamidation hotspots in the SARS-CoV-2 spike protein. Asparagine residues 481 and 501 in the receptor-binding motif deamidate with a half-life of 16.5 and 123 days at 37 °C, respectively. Deamidation is significantly slowed at 4 °C, indicating a strong dependence of spike protein molecular aging on environmental conditions. Deamidation of the spike receptor-binding motif decreases the equilibrium constant for binding to the human angiotensin-converting enzyme 2 receptor more than 3.5-fold, yet its high conservation pattern suggests some positive effect on viral fitness. We propose a model for deamidation of the full SARS-CoV-2 virion illustrating how deamidation of the spike receptor-binding motif could lead to the accumulation on the virion surface of a nonnegligible chemically diverse spike population in a timescale of days. Our findings provide a potential mechanism for molecular aging of the spike protein with significant consequences for understanding virus infectivity and vaccine development.


Assuntos
SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Motivos de Aminoácidos , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/patologia , COVID-19/virologia , Humanos , Concentração de Íons de Hidrogênio , Interferometria , Cinética , Ligação Proteica , Domínios Proteicos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , SARS-CoV-2/isolamento & purificação , Alinhamento de Sequência , Glicoproteína da Espícula de Coronavírus/química
6.
J Physiol Biochem ; 77(4): 565-576, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34097242

RESUMO

In recent studies, we found that compounds derived from phenolic acids (CAFs) prevent the formation of the tubulin/aldose reductase complex and, consequently, may decrease the occurrence or delay the development of secondary pathologies associated with aldose reductase activation in diabetes mellitus. To verify this hypothesis, we determined the effect of CAFs on Na+,K+-ATPase tubulin-dependent activity in COS cells, ex vivo cataract formation in rat lenses and finally, to evaluate the antidiabetic effect of CAFs, diabetes mellitus was induced in Wistar rats, they were treated with different CAFs and four parameters were determinates: cataract formation, erythrocyte deformability, nephropathy and blood pressure. After confirming that CAFs are able to prevent the association between aldose reductase and tubulin, we found that treatment of diabetic rats with these compounds decreased membrane-associated acetylated tubulin, increased NKA activity, and thus reversed the development of four AR-activated complications of diabetes mellitus determined in this work. Based on these results, the existence of a new physiological mechanism is proposed, in which tubulin is a key regulator of aldose reductase activity. This mechanism can explain the incorrect functioning of aldose reductase and Na+,K+-ATPase, two key enzymes in the pathogenesis of diabetes mellitus. Moreover, we found that such alterations can be prevented by CAFs, which are able to dissociate tubulin/aldose reductase complex.


Assuntos
Diabetes Mellitus Experimental , Cristalino , Aldeído Redutase , Animais , Diabetes Mellitus Experimental/complicações , Ratos , Ratos Wistar , Tubulina (Proteína)
7.
mBio ; 12(2)2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33879593

RESUMO

The ability to sense and respond to environmental cues is essential for adaptation and survival in living organisms. In bacteria, this process is accomplished by multidomain sensor histidine kinases that undergo autophosphorylation in response to specific stimuli, thereby triggering downstream signaling cascades. However, the molecular mechanism of allosteric activation is not fully understood in these important sensor proteins. Here, we report the full-length crystal structure of a blue light photoreceptor LOV histidine kinase (LOV-HK) involved in light-dependent virulence modulation in the pathogenic bacterium Brucella abortus Joint analyses of dark and light structures determined in different signaling states have shown that LOV-HK transitions from a symmetric dark structure to a highly asymmetric light state. The initial local and subtle structural signal originated in the chromophore-binding LOV domain alters the dimer asymmetry via a coiled-coil rotary switch and helical bending in the helical spine. These amplified structural changes result in enhanced conformational flexibility and large-scale rearrangements that facilitate the phosphoryl transfer reaction in the HK domain.IMPORTANCE Bacteria employ two-component systems (TCSs) to sense and respond to changes in their surroundings. At the core of the TCS signaling pathway is the multidomain sensor histidine kinase, where the enzymatic activity of its output domain is allosterically controlled by the input signal perceived by the sensor domain. Here, we examine the structures and dynamics of a naturally occurring light-sensitive histidine kinase from the pathogen Brucella abortus in both its full-length and its truncated constructs. Direct comparisons between the structures captured in different signaling states have revealed concerted protein motions in an asymmetric dimer framework in response to light. Findings of this work provide mechanistic insights into modular sensory proteins that share a similar modular architecture.


Assuntos
Proteínas de Bactérias/metabolismo , Brucella abortus/enzimologia , Brucella abortus/metabolismo , Cor , Histidina Quinase/química , Histidina Quinase/metabolismo , Luz , Proteínas de Bactérias/genética , Brucella abortus/genética , Brucella abortus/patogenicidade , Histidina Quinase/genética , Modelos Moleculares , Domínios Proteicos , Transdução de Sinais
8.
Acta Crystallogr D Struct Biol ; 76(Pt 11): 1080-1091, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33135679

RESUMO

Carbohydrate-lectin interactions are involved in important cellular recognition processes, including viral and bacterial infections, inflammation and tumor metastasis. Hence, structural studies of lectin-synthetic glycan complexes are essential for understanding lectin-recognition processes and for the further design of promising chemotherapeutics that interfere with sugar-lectin interactions. Plant lectins are excellent models for the study of the molecular-recognition process. Among them, peanut lectin (PNA) is highly relevant in the field of glycobiology because of its specificity for ß-galactosides, showing high affinity towards the Thomsen-Friedenreich antigen, a well known tumor-associated carbohydrate antigen. Given this specificity, PNA is one of the most frequently used molecular probes for the recognition of tumor cell-surface O-glycans. Thus, it has been extensively used in glycobiology for inhibition studies with a variety of ß-galactoside and ß-lactoside ligands. Here, crystal structures of PNA are reported in complex with six novel synthetic hydrolytically stable ß-N- and ß-S-galactosides. These complexes disclosed key molecular-binding interactions of the different sugars with PNA at the atomic level, revealing the roles of specific water molecules in protein-ligand recognition. Furthermore, binding-affinity studies by isothermal titration calorimetry showed dissociation-constant values in the micromolar range, as well as a positive multivalency effect in terms of affinity in the case of the divalent compounds. Taken together, this work provides a qualitative structural rationale for the upcoming synthesis of optimized glycoclusters designed for the study of lectin-mediated biological processes. The understanding of the recognition of ß-N- and ß-S-galactosides by PNA represents a benchmark in protein-carbohydrate interactions since they are novel synthetic ligands that do not belong to the family of O-linked glycosides.


Assuntos
Galactosídeos , Modelos Moleculares , Aglutinina de Amendoim , Galactosídeos/química , Ligantes , Aglutinina de Amendoim/química , Ligação Proteica
9.
Medicina (B Aires) ; 80 Suppl 3: 1-6, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32658841

RESUMO

The disease named COVID-19, caused by the SARS-CoV-2 coronavirus, is currently generating a global pandemic. Vaccine development is no doubt the best long-term immunological approach, but in the current epidemiologic and health emergency there is a need for rapid and effective solutions. Convalescent plasma is the only antibody-based therapy available for COVID-19 patients to date. Equine polyclonal antibodies (EpAbs) put forward a sound alternative. The new generation of processed and purified EpAbs containing highly purified F(ab')2 fragments demonstrated to be safe and well tolerated. EpAbs are easy to manufacture allowing a fast development and scaling up for a treatment. Based on these ideas, we present a new therapeutic product obtained after immunization of horses with the receptor-binding domain of the viral Spike glycoprotein. Our product shows around 50 times more potency in in vitro seroneutralization assays than the average of convalescent plasma. This result may allow us to test the safety and efficacy of this product in a phase 2/3 clinical trial to be conducted in July 2020 in the metropolitan area of Buenos Aires, Argentina.


La enfermedad denominada COVID-19 es causada por el coronavirus SARS-CoV-2 y es actualmente considerada una pandemia a nivel global. El desarrollo de vacunas es sin duda la mejor estrategia a largo plazo, pero debido a la emergencia sanitaria, existe una necesidad urgente de encontrar soluciones rápidas y efectivas para el tratamiento de la enfermedad. Hasta la fecha, el uso de plasma de convalecientes es la única inmunoterapia disponible para pacientes hospitalizados con COVID-19. El uso de anticuerpos policlonales equinos (EpAbs) es otra alternativa terapéutica interesante. La nueva generación de EpAbs incluyen el procesamiento y purificación de los mismos y la obtención de fragmentos F(ab')2 con alta pureza y un excelente perfil de seguridad en humanos. Los EpAbs son fáciles de producir, lo cual permite el desarrollo rápido y la elaboración a gran escala de un producto terapéutico. En este trabajo mostramos el desarrollo de un suero terapéutico obtenido luego de la inmunización de caballos utilizando el receptor-binding domain de la glicoproteína Spike del virus. Nuestro producto mostró ser alrededor de 50 veces más potente en ensayos de seroneutralización in vitro que el promedio de los plasmas de convalecientes. Estos resultados nos permitirían testear la seguridad y eficacia de nuestro producto en ensayos clínicos de fase 2/3 a realizarse a partir de julio de 2020 en la zona metropolitana de Buenos Aires, Argentina.


Assuntos
Anticorpos Antivirais , Infecções por Coronavirus/terapia , Soros Imunes/imunologia , Fragmentos Fab das Imunoglobulinas/isolamento & purificação , Imunoglobulina G/isolamento & purificação , Pandemias , Pneumonia Viral , Glicoproteína da Espícula de Coronavírus , Animais , Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/isolamento & purificação , Argentina , Betacoronavirus , COVID-19 , Cavalos , Humanos , Imunização Passiva , Fragmentos Fab das Imunoglobulinas/química , Imunoglobulina G/química , Testes de Neutralização , SARS-CoV-2 , Soroterapia para COVID-19
10.
Medicina (B.Aires) ; 80(supl.3): 1-6, June 2020. ilus, graf, tab
Artigo em Inglês | LILACS | ID: biblio-1135184

RESUMO

The disease named COVID-19, caused by the SARS-CoV-2 coronavirus, is currently generating a global pandemic. Vaccine development is no doubt the best long-term immunological approach, but in the current epidemiologic and health emergency there is a need for rapid and effective solutions. Convalescent plasma is the only antibody-based therapy available for COVID-19 patients to date. Equine polyclonal antibodies (EpAbs) put forward a sound alternative. The new generation of processed and purified EpAbs containing highly purified F(ab’)2 fragments demonstrated to be safe and well tolerated. EpAbs are easy to manufacture allowing a fast development and scaling up for a treatment. Based on these ideas, we present a new therapeutic product obtained after immunization of horses with the receptor-binding domain of the viral Spike glycoprotein. Our product shows around 50 times more potency in in vitro seroneutralization assays than the average of convalescent plasma. This result may allow us to test the safety and efficacy of this product in a phase 2/3 clinical trial to be conducted in July 2020 in the metropolitan area of Buenos Aires, Argentina.


La enfermedad denominada COVID-19 es causada por el coronavirus SARS-CoV-2 y es actualmente considerada una pandemia a nivel global. El desarrollo de vacunas es sin duda la mejor estrategia a largo plazo, pero debido a la emergencia sanitaria, existe una necesidad urgente de encontrar soluciones rápidas y efectivas para el tratamiento de la enfermedad. Hasta la fecha, el uso de plasma de convalecientes es la única inmunoterapia disponible para pacientes hospitalizados con COVID-19. El uso de anticuerpos policlonales equinos (EpAbs) es otra alternativa terapéutica interesante. La nueva generación de EpAbs incluyen el procesamiento y purificación de los mismos y la obtención de fragmentos F(ab’)2 con alta pureza y un excelente perfil de seguridad en humanos. Los EpAbs son fáciles de producir, lo cual permite el desarrollo rápido y la elaboración a gran escala de un producto terapéutico. En este trabajo mostramos el desarrollo de un suero terapéutico obtenido luego de la inmunización de caballos utilizando el receptor-binding domain de la glicoproteína Spike del virus. Nuestro producto mostró ser alrededor de 50 veces más potente en ensayos de seroneutralización in vitro que el promedio de los plasmas de convalecientes. Estos resultados nos permitirían testear la seguridad y eficacia de nuestro producto en ensayos clínicos de fase 2/3 a realizarse a partir de julio de 2020 en la zona metropolitana de Buenos Aires, Argentina.


Assuntos
Humanos , Animais , Fragmentos Fab das Imunoglobulinas/isolamento & purificação , Infecções por Coronavirus/terapia , Soros Imunes/imunologia , Anticorpos Antivirais/isolamento & purificação , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/química , Argentina , Imunoglobulina G/isolamento & purificação , Imunoglobulina G/química , Fragmentos Fab das Imunoglobulinas/química , Testes de Neutralização , Pandemias , Betacoronavirus , SARS-CoV-2 , COVID-19 , Cavalos
11.
Biochem Mol Biol Educ ; 47(6): 700-707, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31444958

RESUMO

X-ray crystallography provides structural information of molecules at the atomic level, being a central technique at the forefront of science and technology. However, crystallography teaching is not usually implemented in biochemistry lab classes due to its complex execution by nonexpert users. Here, we report the basic step-by-step workflow performed by crystallographers in order to solve the three-dimensional structure of a protein. All these activities were executed in a course for Latin-American graduate students with no previous knowledge on X-ray crystallography entitled "Crystallography in Structural Biology: why do we need a protein crystal, and how do we get it?." We would like to share our experience with the educational research community, with the main purpose being to enrich teaching in biochemistry and structural molecular biology by performing a series of interesting laboratory and computer experiments. © 2019 International Union of Biochemistry and Molecular Biology, 47(6):700-707, 2019.


Assuntos
Laboratórios , Muramidase/química , Animais , Bioquímica/educação , Galinhas , Cristalografia por Raios X , Currículo , Humanos , Modelos Moleculares , Biologia Molecular/educação , Muramidase/metabolismo , Estudantes
12.
Artigo em Inglês | MEDLINE | ID: mdl-30348667

RESUMO

Carbapenems are "last resort" ß-lactam antibiotics used to treat serious and life-threatening health care-associated infections caused by multidrug-resistant Gram-negative bacteria. Unfortunately, the worldwide spread of genes coding for carbapenemases among these bacteria is threatening these life-saving drugs. Metallo-ß-lactamases (MßLs) are the largest family of carbapenemases. These are Zn(II)-dependent hydrolases that are active against almost all ß-lactam antibiotics. Their catalytic mechanism and the features driving substrate specificity have been matter of intense debate. The active sites of MßLs are flanked by two loops, one of which, loop L3, was shown to adopt different conformations upon substrate or inhibitor binding, and thus are expected to play a role in substrate recognition. However, the sequence heterogeneity observed in this loop in different MßLs has limited the generalizations about its role. Here, we report the engineering of different loops within the scaffold of the clinically relevant carbapenemase NDM-1. We found that the loop sequence dictates its conformation in the unbound form of the enzyme, eliciting different degrees of active-site exposure. However, these structural changes have a minor impact on the substrate profile. Instead, we report that the loop conformation determines the protonation rate of key reaction intermediates accumulated during the hydrolysis of different ß-lactams in all MßLs. This study demonstrates the existence of a direct link between the conformation of this loop and the mechanistic features of the enzyme, bringing to light an unexplored function of active-site loops on MßLs.


Assuntos
Antibacterianos/química , Ceftazidima/química , Imipenem/química , Meropeném/química , Zinco/química , beta-Lactamases/química , Sequência de Aminoácidos , Antibacterianos/metabolismo , Domínio Catalítico , Cefepima/química , Cefepima/metabolismo , Cefotaxima/química , Cefotaxima/metabolismo , Ceftazidima/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Imipenem/metabolismo , Cinética , Meropeném/metabolismo , Modelos Moleculares , Piperacilina/química , Piperacilina/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Engenharia de Proteínas , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Zinco/metabolismo , Resistência beta-Lactâmica , beta-Lactamases/genética , beta-Lactamases/metabolismo
13.
Chem Sci ; 9(32): 6692-6702, 2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-30310603

RESUMO

Copper sites in proteins are designed to perform either electron transfer or redox catalysis. Type 1 and CuA sites are electron transfer hubs bound to a rigid protein fold that prevents binding of exogenous ligands and side reactions. Here we report the engineering of two Type 1 sites by loop-directed mutagenesis within a CuA scaffold with unique electronic structures and functional features. A copper-thioether axial bond shorter than the copper-thiolate bond is responsible for the electronic structure features, in contrast to all other natural or chimeric sites where the copper thiolate bond is short. These sites display highly unusual features, such as: (1) a high reduction potential despite a strong interaction with the axial ligand, which we attribute to changes in the hydrogen bond network and (2) the ability to bind exogenous ligands such as imidazole and azide. This strategy widens the possibility of using natural protein scaffolds with functional features not present in nature.

14.
Genome Announc ; 6(10)2018 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-29519839

RESUMO

Here, we report the draft genome sequence of Methylobacterium sp. strain V23, a bacterium isolated from accretion ice of the subglacial Lake Vostok (3,592 meters below the surface). This genome makes possible the study of ancient and psychrophilic genes and proteins from a subglacial environment isolated from the surface for at least 15 million years.

15.
Biochem Mol Biol Educ ; 46(1): 83-90, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29131507

RESUMO

The bacterial cell wall, a structural unit of peptidoglycan polymer comprised of glycan strands consisting of a repeating disaccharide motif [N-acetylglucosamine (NAG) and N-acetylmuramylpentapeptide (NAM pentapeptide)], encases bacteria and provides structural integrity and protection. Lysozymes are enzymes that break down the bacterial cell wall and disrupt the bacterial life cycle by cleaving the linkage between the NAG and NAM carbohydrates. Lab exercises focused on the effects of lysozyme on the bacterial cell wall are frequently incorporated in biochemistry classes designed for undergraduate students in diverse fields as biology, microbiology, chemistry, agronomy, medicine, and veterinary medicine. Such exercises typically do not include structural data. We describe here a sequence of computer tasks designed to illustrate and reinforce both physiological and structural concepts involved in lysozyme effects on the bacterial cell-wall structure. This lab class usually lasts 3.5 hours. First, the instructor presents introductory concepts of the bacterial cell wall and the effect of lysozyme on its structure. Then, students are taught to use computer modeling to visualize the three-dimensional structure of a lysozyme in complex with bacterial cell-wall fragments. Finally, the lysozyme inhibitory effect on a bacterial culture is optionally proposed as a simple microbiological assay. The computer lab exercises described here give students a realistic understanding of the disruptive effect of lysozymes on the bacterial cell wall, a crucial component in bacterial survival. © 2017 by The International Union of Biochemistry and Molecular Biology, 46(1):83-90, 2018.


Assuntos
Parede Celular/química , Parede Celular/metabolismo , Simulação por Computador , Muramidase/metabolismo , Biopolímeros/química , Biopolímeros/metabolismo , Configuração de Carboidratos , Laboratórios , Micrococcus luteus/química , Micrococcus luteus/citologia , Peptidoglicano/química , Peptidoglicano/metabolismo , Ensino
16.
PLoS One ; 12(8): e0182535, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28771589

RESUMO

Heme oxygenase from Leptospira interrogans is an important virulence factor. During catalysis, redox equivalents are provided to this enzyme by the plastidic-type ferredoxin-NADP+ reductase also found in L. interrogans. This process may have evolved to aid this bacterial pathogen to obtain heme-iron from their host and enable successful colonization. Herein we report the crystal structure of the heme oxygenase-heme complex at 1.73 Å resolution. The structure reveals several distinctive features related to its function. A hydrogen bonded network of structural water molecules that extends from the catalytic site to the protein surface was cleared observed. A depression on the surface appears to be the H+ network entrance from the aqueous environment to the catalytic site for O2 activation, a key step in the heme oxygenase reaction. We have performed a mutational analysis of the F157, located at the above-mentioned depression. The mutant enzymes were unable to carry out the complete degradation of heme to biliverdin since the reaction was arrested at the verdoheme stage. We also observed that the stability of the oxyferrous complex, the efficiency of heme hydroxylation and the subsequent conversion to verdoheme was adversely affected. These findings underscore a long-range communication between the outer fringes of the hydrogen-bonded network of structural waters and the heme active site during catalysis. Finally, by analyzing the crystal structures of ferredoxin-NADP+ reductase and heme oxygenase, we propose a model for the productive association of these proteins.


Assuntos
Heme Oxigenase (Desciclizante)/química , Heme Oxigenase (Desciclizante)/genética , Leptospira interrogans/patogenicidade , Mutagênese Sítio-Dirigida/métodos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Domínio Catalítico , Cristalografia por Raios X , Ativação Enzimática , Ligação de Hidrogênio , Leptospira interrogans/enzimologia , Leptospira interrogans/genética , Modelos Moleculares , Conformação Proteica , Estabilidade Proteica , Fatores de Virulência/química , Fatores de Virulência/genética
17.
J Struct Biol ; 197(3): 201-209, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27810564

RESUMO

The Pfam PF04536 TPM_phosphatase family is a broadly conserved family of domains found across prokaryotes, plants and invertebrates. Despite having a similar protein fold, members of this family have been implicated in diverse cellular processes and found in varied subcellular localizations. Very recently, the biochemical characterization of two evolutionary divergent TPM domains has shown that they are able to hydrolyze phosphate groups from different substrates. However, there are still incorrect functional annotations and uncertain relationships between the structure and function of this family of domains. BA41 is an uncharacterized single-pass transmembrane protein from the Antarctic psychrotolerant bacterium Bizionia argentinensis with a predicted compact extracytoplasmic TPM domain and a C-terminal cytoplasmic low complexity region. To shed light on the structural properties that enable TPM domains to adopt divergent roles, we here accomplish a comprehensive structural and functional characterization of the central TPM domain of BA41 (BA41-TPM). Contrary to its predicted function as a beta-propeller methanol dehydrogenase, light scattering and crystallographic studies showed that BA41-TPM behaves as a globular monomeric protein and adopts a conserved Rossmann fold, typically observed in other TPM domain structures. Although the crystal structure reveals the conservation of residues involved in substrate binding, no putative catalytic or intramolecular metal ions were detected. Most important, however, extensive biochemical studies demonstrated that BA41-TPM has hydrolase activity against ADP, ATP, and other di- and triphosphate nucleotides and shares properties of cold-adapted enzymes. The role of BA41 in extracellular ATP-mediated signaling pathways and its occurrence in environmental and pathogenic microorganisms is discussed.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Apirase/química , Apirase/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Temperatura Baixa , Cristalografia por Raios X , Estrutura Terciária de Proteína
18.
J Mol Biol ; 427(20): 3258-3272, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26113057

RESUMO

Brucella abortus is an important pathogenic bacterium that has to overcome oxygen deficiency in order to achieve a successful infection. Previously, we proved that a two-component system formed by the histidine kinase NtrY and the response regulator NtrX is essential to achieve an adaptive response to low oxygen tension conditions. Even though the relevance of this signaling pathway has already been demonstrated in other microorganisms, its molecular activation mechanism has not yet been described in detail. In this article, we report the first crystal structures from different conformations of the NtrX receiver domain from B. abortus, and we propose a sequence of events to explain the structural rearrangements along the activation process. The analysis of the structures obtained in the presence of the phosphoryl group analog beryllofluoride led us to postulate that changes in the interface formed by the α4 helix and the ß5 strand are important for the activation, producing a reorientation of the α5 helix. Also, a biochemical characterization of the NtrX receiver domain enzymatic activities was performed, describing its autophosphorylation and autodephosphorylation kinetics. Finally, the role of H85, an important residue, was addressed by site-directed mutagenesis. Overall, these results provide significant structural basis for understanding the response regulator activation in this bacterial two-component system.


Assuntos
Proteínas de Bactérias/ultraestrutura , Brucella abortus/enzimologia , Proteínas Quinases/ultraestrutura , Brucella abortus/metabolismo , Hipóxia Celular/fisiologia , Cristalografia por Raios X , Histidina Quinase , Oxigênio/metabolismo , Estrutura Terciária de Proteína , Transdução de Sinais
19.
J Am Chem Soc ; 137(5): 1738-41, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25629446

RESUMO

In the face of the clinical challenge posed by resistant bacteria, the present needs for novel classes of antibiotics are genuine. In silico docking and screening, followed by chemical synthesis of a library of quinazolinones, led to the discovery of (E)-3-(3-carboxyphenyl)-2-(4-cyanostyryl)quinazolin-4(3H)-one (compound 2) as an antibiotic effective in vivo against methicillin-resistant Staphylococcus aureus (MRSA). This antibiotic impairs cell-wall biosynthesis as documented by functional assays, showing binding of 2 to penicillin-binding protein (PBP) 2a. We document that the antibiotic also inhibits PBP1 of S. aureus, indicating a broad targeting of structurally similar PBPs by this antibiotic. This class of antibiotics holds promise in fighting MRSA infections.


Assuntos
Antibacterianos/farmacologia , Descoberta de Drogas , Quinazolinonas/farmacologia , Antibacterianos/farmacocinética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Disponibilidade Biológica , Testes de Sensibilidade Microbiana , Modelos Moleculares , Proteínas de Ligação às Penicilinas , Conformação Proteica , Quinazolinonas/farmacocinética , Staphylococcus/efeitos dos fármacos
20.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 12): 1636-9, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25484215

RESUMO

Phytochromes give rise to the largest photosensor family known to date. However, they are underrepresented in the Protein Data Bank. Plant, cyanobacterial, fungal and bacterial phytochromes share a canonical architecture consisting of an N-terminal photosensory module (PAS2-GAF-PHY domains) and a C-terminal variable output module. The bacterium Xanthomonas campestris pv. campestris, a worldwide agricultural pathogen, codes for a single bacteriophytochrome (XccBphP) that has this canonical architecture, bearing a C-terminal PAS9 domain as the output module. Full-length XccBphP was cloned, expressed and purified to homogeneity by nickel-NTA affinity and size-exclusion chromatography and was then crystallized at room temperature bound to its cofactor biliverdin. A complete native X-ray diffraction data set was collected to a maximum resolution of 3.25 Å. The crystals belonged to space group P43212, with unit-cell parameters a = b = 103.94, c = 344.57 Šand a dimer in the asymmetric unit. Refinement is underway after solving the structure by molecular replacement.


Assuntos
Fitocromo/química , Xanthomonas campestris/química , Sequência de Aminoácidos , Cristalização , Cristalografia por Raios X , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...