Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Stem Cell Res Ther ; 11(1): 417, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32988411

RESUMO

BACKGROUND: Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) show tremendous promise for cardiac regeneration, but the successful development of hESC-CM-based therapies requires improved tools to investigate their electrical behavior in recipient hearts. While optical voltage mapping is a powerful technique for studying myocardial electrical activity ex vivo, we have previously shown that intra-cardiac hESC-CM grafts are not labeled by conventional voltage-sensitive fluorescent dyes. We hypothesized that the water-soluble voltage-sensitive dye di-2-ANEPEQ would label engrafted hESC-CMs and thereby facilitate characterization of graft electrical function and integration. METHODS: We developed and validated a novel optical voltage mapping strategy based on the simultaneous imaging of the calcium-sensitive fluorescent protein GCaMP3, a graft-autonomous reporter of graft activation, and optical action potentials (oAPs) derived from di-2-ANEPEQ, which labels both graft and host myocardium. Cardiomyocytes from three different GCaMP3+ hESC lines (H7, RUES2, or ESI-17) were transplanted into guinea pig models of subacute and chronic infarction, followed by optical mapping at 2 weeks post-transplantation. RESULTS: Use of a water-soluble voltage-sensitive dye revealed pro-arrhythmic properties of GCaMP3+ hESC-CM grafts from all three lines including slow conduction velocity, incomplete host-graft coupling, and spatially heterogeneous patterns of activation that varied beat-to-beat. GCaMP3+ hESC-CMs from the RUES2 and ESI-17 lines both showed prolonged oAP durations both in vitro and in vivo. Although hESC-CMs partially remuscularize the injured hearts, histological evaluation revealed immature graft structure and impaired gap junction expression at this early timepoint. CONCLUSION: Simultaneous imaging of GCaMP3 and di-2-ANEPEQ allowed us to acquire the first unambiguously graft-derived oAPs from hESC-CM-engrafted hearts and yielded critical insights into their arrhythmogenic potential and line-to-line variation.


Assuntos
Células-Tronco Embrionárias Humanas , Miócitos Cardíacos , Animais , Diferenciação Celular , Células-Tronco Embrionárias , Cobaias , Miocárdio
3.
J Membr Biol ; 249(4): 539-49, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27116687

RESUMO

The nicotinic acetylcholine receptor (nAChR), located in the cell membranes of neurons and muscle cells, mediates the transmission of nerve impulses across cholinergic synapses. In addition, the nAChR is also found in the electric organs of electric rays (e.g., the genus Torpedo). Cholesterol, which is a key lipid for maintaining the correct functionality of membrane proteins, has been found to alter the nAChR function. We were thus interested to probe the changes in the functionality of different nAChRs expressed in a model membrane with modified cholesterol to phospholipid ratios (C/P). In this study, we examined the effect of increasing the C/P ratio in Xenopus laevis oocytes expressing the neuronal α7, α4ß2, muscle-type, and Torpedo californica nAChRs in their macroscopic current responses. Using the two-electrode voltage clamp technique, it was found that the neuronal α7 and Torpedo nAChRs are significantly more sensitive to small increases in C/P than the muscle-type nAChR. The peak current versus C/P profiles during enrichment display different behaviors; α7 and Torpedo nAChRs display a hyperbolic decay with two clear components, whereas muscle-type and α4ß2 nAChRs display simple monophasic decays with different slopes. This study clearly illustrates that a physiologically relevant increase in membrane cholesterol concentration produces a remarkable reduction in the macroscopic current responses of the neuronal α7 and Torpedo nAChRs functionality, whereas the muscle nAChR appears to be the most resistant to cholesterol inhibition among all four nAChR subtypes. Overall, the present study demonstrates differential profiles for cholesterol inhibition among the different types of nAChR to physiological cholesterol increments in the plasmatic membrane. This is the first study to report a cross-correlation analysis of cholesterol sensitivity among different nAChR subtypes in a model membrane.


Assuntos
Colesterol/metabolismo , Ativação do Canal Iônico , Receptores Nicotínicos/metabolismo , Animais , Membrana Celular/química , Membrana Celular/metabolismo , Oócitos/metabolismo , Técnicas de Patch-Clamp , Fosfolipídeos , Xenopus laevis
4.
P R Health Sci J ; 29(1): 4-17, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20222328

RESUMO

Despite the fact that they are orphan diseases, congenital myasthenic syndromes (CMS) challenge those who suffer from it by causing fatigable muscle weakness, in the most benign cases, to a progressive wasting of muscles that may sentence patients to a wheelchair or even death. Compared to other more common neurological diseases, CMS are rare. Nevertheless, extensive research in CMS is performed in laboratories such as ours. Among the diverse neuromuscular disorders of CMS, we are focusing in the slow-channel congenital myasthenic syndrome (SCS), which is caused by mutations in genes encoding acetylcholine receptor subunits. The study of SCS has evolved from clinical electrophysiological studies to in vitro expression systems and transgenic mice models. The present review evaluates the methodological approaches that are most commonly employed to assess synaptic impairment in SCS and also provides perspectives for new approaches. Electrophysiological methodologies typically employed by physicians to diagnose patients include electromyography, whereas patient muscle samples are used for intracellular recordings, single-channel recordings and toxin binding experiments. In vitro expression systems allow the study of a particular mutation without the need of patient intervention. Indeed, in vitro expression systems have usually been implicated in the development of therapeutic strategies such as quinidine- and fluoxetine-based treatments and, more recently, RNA interference. A breakthrough in the study of SCS has been the development of transgenic mice bearing the mutations that cause SCS. These transgenic mice models have actually been key in the elucidation of the pathogenesis of the SCS mutations by linking IP-3 receptors to calcium overloading, as well as caspases and calpains to the hallmark of SCS, namely endplate myopathy. Finally, we summarize our experiences with suspected SCS patients from a local perspective and comment on one aspect of the contribution of our group in the study of SCS.


Assuntos
Modelos Animais de Doenças , Síndromes Miastênicas Congênitas/etiologia , Animais , Eletromiografia , Expressão Gênica , Camundongos , Síndromes Miastênicas Congênitas/genética , Síndromes Miastênicas Congênitas/fisiopatologia
5.
Channels (Austin) ; 2(6): 439-48, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19066450

RESUMO

The nicotinic acetylcholine receptor (nAChR) is a ligand-gated ion channel protein that mediates fast excitatory synaptic transmission in the peripheral and central nervous systems. Changes in the structure and function of the AChR can lead to serious impairment of physiological processes. In this study, we combined site-directed mutagenesis, radioligand binding assays, electrophysiological recordings and Fourier analyses to characterize the functional role and structural aspects of the betaM4 transmembrane domain of the Torpedo AChR. We performed tryptophan replacements, from residues L438 through F455, along the betaM4 transmembrane domain. Expression levels of mutants F439W-G450W and F452W-I454W produced peak currents similar to or lower than those in wild-type (WT). Tryptophan substitutions at positions L438 and T451 led to a deficiency in either subunit expression or receptor assembly. Mutations L440W, V442W, C447W and S453W produced a gain-of-function response. Mutation F455W produced a loss of ion channel function. The periodicity profile of the normalized expression level (closed state) and EC(50) (open state) revealed a minor conformational change of 0.4 residues/turn of the betaM4 domain. These findings suggest that a minor movement of the betaM4 domain occurs during channel activation.


Assuntos
Sítio Alostérico , Receptores Colinérgicos/genética , Triptofano , Animais , Eletrofisiologia , Humanos , Lipídeos , Movimento , Mutagênese Sítio-Dirigida , Conformação Proteica , Proteínas , Ensaio Radioligante , Receptores Colinérgicos/metabolismo , Receptores Colinérgicos/fisiologia
6.
Biochim Biophys Acta ; 1784(9): 1200-7, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18346473

RESUMO

Although Fourier transform (FT) and tryptophan-scanning mutagenesis (TrpScanM) have been extremely useful for predicting secondary structures of membrane proteins, they are deemed to be low-resolution techniques. Herein, we describe the combined use of FT and TrpScanM (FT-TrpScanM) as a more reliable approach for the prediction of secondary structure. Five TrpScanM studies of the acetylcholine receptor lipid-exposed transmembrane domains (LETMDs) were revisited and analyzed by FT-TrpScanM. FT analysis of the raw data from the aforementioned TrpScanM studies supports and validates the conclusions derived from their tryptophan-periodicity profiles. Furthermore, by FT-TrpScanM, we were able to determine the minimum number of consecutive tryptophan substitutions necessary for more robust prediction of alpha-helical secondary structures and evaluate the quality of structure predictions by alpha-helical character curves. Finally, this study encourages future utilization of FT-TrpScanM to more reliably predict secondary structures of the membrane protein LETMDs.


Assuntos
Receptores Colinérgicos/química , Receptores Colinérgicos/genética , Animais , Feminino , Análise de Fourier , Técnicas In Vitro , Lipídeos de Membrana/química , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos , Mutagênese Insercional , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Torpedo , Triptofano/química , Xenopus laevis
7.
J Biol Chem ; 282(12): 9162-71, 2007 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-17242410

RESUMO

Membrane proteins constitute a large fraction of all proteins, yet very little is known about their structure and conformational transitions. A fundamental question that remains obscure is how protein domains that are in direct contact with the membrane lipids move during the conformational change of the membrane protein. Important structural and functional information of several lipid-exposed transmembrane domains of the acetylcholine receptor (AChR) and other ion channel membrane proteins have been provided by the tryptophan-scanning mutagenesis. Here, we use the tryptophan-scanning mutagenesis to monitor the conformational change of the alphaM3 domain of the muscle-type AChR. The perturbation produced by the systematic tryptophan substitution along the alphaM3 domain were characterized through two-electrode voltage clamp and 125I-labeled alpha-bungarotoxin binding. The periodicity profiles of the changes in AChR expression (closed state) and ACh EC50 (open-channel state) disclose two different helical structures; a thinner-elongated helix for the closed state and a thicker-shrunken helix for the open-channel state. The existence of two different helical structures suggest that the conformational transition of the alphaM3 domain between both states resembles a spring motion and reveals that the lipid-AChR interface plays a key role in the propagation of the conformational wave evoked by agonist binding. In addition, the present study also provides evidence about functional and structural differences between the alphaM3 domains of the Torpedo and muscle-type receptors AChR.


Assuntos
Músculos/metabolismo , Mutagênese , Receptores Colinérgicos/genética , Triptofano/genética , Sequência de Aminoácidos , Animais , Bungarotoxinas/química , Humanos , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Técnicas de Patch-Clamp , Ligação Proteica , Conformação Proteica , Receptores Colinérgicos/metabolismo , Triptofano/química , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...