Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
PLoS One ; 19(2): e0296878, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38306347

RESUMO

Paper mulberry pollen, declared a pest in several countries including Pakistan, can trigger severe allergies and cause asthma attacks. We aimed to develop an algorithm that could accurately predict high pollen days to underpin an alert system that would allow patients to take timely precautionary measures. We developed and validated two prediction models that take historical pollen and weather data as their input to predict the start date and peak date of the pollen season in Islamabad, the capital city of Pakistan. The first model is based on linear regression and the second one is based on phenological modelling. We tested our models on an original and comprehensive dataset from Islamabad. The mean absolute errors (MAEs) for the start day are 2.3 and 3.7 days for the linear and phenological models, respectively, while for the peak day, the MAEs are 3.3 and 4.0 days, respectively. These encouraging results could be used in a website or app to notify patients and healthcare providers to start preparing for the paper mulberry pollen season. Timely action could reduce the burden of symptoms, mitigate the risk of acute attacks and potentially prevent deaths due to acute pollen-induced allergy.


Assuntos
Broussonetia , Hipersensibilidade , Morus , Rinite Alérgica Sazonal , Humanos , Árvores , Estações do Ano , Pólen , Alérgenos
2.
Sci Total Environ ; 900: 165800, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37595925

RESUMO

We consider several approaches to a design of a regional-to-continent-scale automatic pollen monitoring network in Europe. Practical challenges related to the arrangement of such a network limit the range of possible solutions. A hierarchical network is discussed, highlighting the necessity of a few reference sites that follow an extended observations protocol and have corresponding capabilities. Several theoretically rigorous approaches to a network design have been developed so far. However, before starting the process, a network purpose, a criterion of its performance, and a concept of the data usage should be formalized. For atmospheric composition monitoring, developments follow one of the two concepts: a network for direct representation of concentration fields and a network for model-based data assimilation, inverse problem solution, and forecasting. The current paper demonstrates the first approach, whereas the inverse problems are considered in a follow-up paper. We discuss the approaches for the network design from theoretical and practical standpoints, formulate criteria for the network optimality, and consider practical constraints for an automatic pollen network. An application of the methodology is demonstrated for a prominent example of Germany's pollen monitoring network. The multi-step method includes (i) the network representativeness and (ii) redundancy evaluation followed by (iii) fidelity evaluation and improvement using synthetic data.

3.
Sci Total Environ ; 866: 161220, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36584954

RESUMO

To benefit allergy patients and the medical practitioners, pollen information should be available in both a reliable and timely manner; the latter is only recently possible due to automatic monitoring. To evaluate the performance of all currently available automatic instruments, an international intercomparison campaign was jointly organised by the EUMETNET AutoPollen Programme and the ADOPT COST Action in Munich, Germany (March-July 2021). The automatic systems (hardware plus identification algorithms) were compared with manual Hirst-type traps. Measurements were aggregated into 3-hourly or daily values to allow comparison across all devices. We report results for total pollen as well as for Betula, Fraxinus, Poaceae, and Quercus, for all instruments that provided these data. The results for daily averages compared better with Hirst observations than the 3-hourly values. For total pollen, there was a considerable spread among systems, with some reaching R2 > 0.6 (3 h) and R2 > 0.75 (daily) compared with Hirst-type traps, whilst other systems were not suitable to sample total pollen efficiently (R2 < 0.3). For individual pollen types, results similar to the Hirst were frequently shown by a small group of systems. For Betula, almost all systems performed well (R2 > 0.75 for 9 systems for 3-hourly data). Results for Fraxinus and Quercus were not as good for most systems, while for Poaceae (with some exceptions), the performance was weakest. For all pollen types and for most measurement systems, false positive classifications were observed outside of the main pollen season. Different algorithms applied to the same device also showed different results, highlighting the importance of this aspect of the measurement system. Overall, given the 30 % error on daily concentrations that is currently accepted for Hirst-type traps, several automatic systems are currently capable of being used operationally to provide real-time observations at high temporal resolutions. They provide distinct advantages compared to the manual Hirst-type measurements.


Assuntos
Alérgenos , Hipersensibilidade , Humanos , Monitoramento Ambiental/métodos , Pólen , Estações do Ano , Poaceae , Betula
4.
Environ Res ; 214(Pt 3): 113987, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35961547

RESUMO

The drivers affecting the Pollen Allergen Potency (PAP, amount of allergen released per pollen) are sparsely known. Betula and Poaceae airborne pollen are the two main allergenic pollen in the World. Airborne pollen and their allergens Bet v 1 and Phl p 5 were simultaneously measured from 2010 to 2015 in Davos (Switzerland) and Munich (Germany) by using volumetric traps and ChemVol cascade impactors. Daily variations in PAP were analysed in PM>10 and PM2.5-10 air fractions and generalized additive models were created to explain which factors determine PAP, including meteorological parameters and inorganic pollutants. 87.1 ± 13.9% of Bet v 1 and 88.8 ± 15.5% of Phl p 5 was detected in the fraction PM>10 where most pollen grains were collected. Significantly higher PAP for grasses (3.5 ± 1.9 pg Phl p 5/pollen grain) were observed in Munich than in Davos (2.4 ± 1.5 pg/pollen grain, p < 0.001), but not for Betula (2.5 ± 1.6 pg Bet v 1/pollen grain in Munich and 2.3 ± 1.7 in Davos, N.S.). PAP varied between days, years and location, and increased along the pollen season for Poaceae, but remaining constant for Betula. Free allergens (allergens observed in the fraction with limited pollen, PM2.5- 10) were recorded mostly at the beginning or at the end of the pollen season, being linked to higher humidity and rainy days. Also, PAP was higher when the airborne pollen concentrations increased rapidly after one day of low/moderate levels. Our findings show that pollen exposure explains allergen exposure only to a limited extend, and that day in the season, geographic location and some weather conditions need to be considered also to explain symptoms of allergic individuals.


Assuntos
Alérgenos , Hipersensibilidade , Alérgenos/análise , Betula , Humanos , Poaceae , Pólen
5.
Sci Total Environ ; 827: 154370, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35276149

RESUMO

Airborne pollen concentration varies depending on several factors, such as local plant biodiversity, geography and climatology. These particles are involved in triggering pollinosis in a share of worldwide human population, and adequate monitoring is, therefore, important. However, the pollen traps in aerobiological monitoring networks are usually installed in cities, and the features of the whole territory are not taken into account. The aim of this study was to analyze what environmental parameters are more suitable as regards setting up monitoring stations throughout a territory in order to obtain an aerobiological network that can represent environmental diversity. The analysis was carried out in 13 locations in Castilla y León over an 8 year period. This is a favorable territory in which to conduct this type of study owing to its climatic features, orography and biodiversity. The ten most abundant pollen types in the region were analyzed, and a clustering analysis was calculated with different distances so as to obtain homogeneous groups of stations. Moreover, the clusters obtained were analyzed in combination with altitudinal and different bioclimatic parameters, which derived from temperature and precipitation. The result here shows that the Castilla y León aerobiological network RACYL represents most of the environmental variability of the territory. Furthermore, it can be divided into two clusters and five sub-clusters for which the start of the main pollen season is different. This corresponds with the division of the territory as regards bioclimatic conditions. The most important bioclimatic parameters were the seasonality of the precipitation and the maximum temperature of the warmest month, although orography must also be taken into account. All of these help discover the optimal places in which to install traps and could reduce the number of monitoring stations. This study additionally provides data for unmonitored areas with similar bioclimatic conditions to those monitored.


Assuntos
Alérgenos , Monitoramento Ambiental , Alérgenos/análise , Cidades , Humanos , Pólen/química , Estações do Ano , Espanha
6.
Sci Total Environ ; 823: 153596, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35122844

RESUMO

Alternaria conidia have high allergenic potential and they can trigger important respiratory diseases. Due to that and to their extensive detection period, airborne Alternaria spores are considered as a relevant airborne allergenic particle. Several studies have been developed in order to predict the human exposure to this aeroallergen and to prevent their negative effects on sensitive population. These studies revealed that some sampling locations usually have just one single Alternaria spore season while other locations generally have two seasons within the same year. However, the reasons of these two different seasonal patterns remain unclear. To understand them better, the present study was carried out in order to determine if there are any weather conditions that influence these different behaviours at different sampling locations. With this purpose, the airborne Alternaria spore concentrations of 18 sampling locations in a wide range of latitudinal, altitudinal and climate ranges of Spain were studied. The aerobiological samples were obtained by means of Hirst-Type volumetric pollen traps, and the seasonality of the airborne Alternaria spores were analysed. The optimal weather conditions for spore production were studied, and the main weather factor affecting Alternaria spore seasonality were analysed by means of random forests and regression trees. The results showed that the temperature was the most relevant variable for the Alternaria spore dispersion and it influenced both the spore integrals and their seasonality. The water availability was also a very significant variable. Warmer sampling locations generally have a longer period of Alternaria spore detection. However, the spore production declines during the summer when the temperatures are extremely warm, what splits the favourable period for Alternaria spore production and dispersion into two separate ones, detected as two Alternaria spore seasons within the same year.


Assuntos
Microbiologia do Ar , Alternaria , Alérgenos/análise , Monitoramento Ambiental , Humanos , Estações do Ano , Espanha , Esporos Fúngicos
7.
Glob Chang Biol ; 27(22): 5934-5949, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34363285

RESUMO

Climate change impacts on the structure and function of ecosystems will worsen public health issues like allergic diseases. Birch trees (Betula spp.) are important sources of aeroallergens in Central and Northern Europe. Birches are vulnerable to climate change as these trees are sensitive to increased temperatures and summer droughts. This study aims to examine the effect of climate change on airborne birch pollen concentrations in Central Europe using Bavaria in Southern Germany as a case study. Pollen data from 28 monitoring stations in Bavaria were used in this study, with time series of up 30 years long. An integrative approach was used to model airborne birch pollen concentrations taking into account drivers influencing birch tree abundance and birch pollen production and projections made according to different climate change and socioeconomic scenarios. Birch tree abundance is projected to decrease in parts of Bavaria at different rates, depending on the climate scenario, particularly in current centres of the species distribution. Climate change is expected to result in initial increases in pollen load but, due to the reduction in birch trees, the amount of airborne birch pollen will decrease at lower altitudes. Conversely, higher altitude areas will experience expansions in birch tree distribution and subsequent increases in airborne birch pollen in the future. Even considering restrictions for migration rates, increases in pollen load are likely in Southwestern areas, where positive trends have already been detected during the last three decades. Integrating models for the distribution and abundance of pollen sources and the drivers that control birch pollen production allowed us to model airborne birch pollen concentrations in the future. The magnitude of changes depends on location and climate change scenario.


Assuntos
Betula , Mudança Climática , Alérgenos , Ecossistema , Pólen
9.
Environ Sci Pollut Res Int ; 27(36): 45447-45459, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32789634

RESUMO

Cumulative data indicate that pollen grains and air pollution reciprocally interact. Climate changes seem also to influence pollen allergenicity. Depending on the plant species and on the pollutant type and concentration, this interaction may modify the features and metabolism of the pollen grain. Previous results revealed a significant positive correlation between pollen and aeroallergen, even using two different samplers. However, some discrepancy days have been also detected with low pollen but high aeroallergen concentrations. The main aim of the present paper is to find how the environmental factors, and specially pollutants, could affect the amount of allergens from olive and grass airborne pollen. Pollen grains were collected by a Hirst-type volumetric spore trap. Aeroallergen was simultaneously sampled by a low-volume Cyclone Burkard sampler. Phl p 5 and Ole e 1 aeroallergen were quantified by double-sandwich ELISA test. The data related to air pollutants, pollen grains, and aeroallergens were analyzed with descriptive statistic. Spearman's correlation test was used to identify potential correlations between these variables. There is a significant positive correlation between aeroallergens and airborne pollen concentrations, in both studied pollen types, so allergen concentrations could be explained with the pollen concentration. The days with unlinked events coincide between olive and grass allergens. Nevertheless, concerning to our results, pollutants do not affect the amount of allergens per pollen. Even if diverse pollutants show an unclear relationship with the allergen concentration, this association seems to be a casual effect of the leading role of some meteorological parameters.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Olea , Poluentes Atmosféricos/análise , Alérgenos/análise , Proteínas de Plantas/análise , Poaceae , Espanha
10.
Environ Res ; 191: 110031, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32814105

RESUMO

There is high demand for online, real-time and high-quality pollen data. To the moment pollen monitoring has been done manually by highly specialized experts. Here we evaluate the electronic Pollen Information Network (ePIN) comprising 8 automatic BAA500 pollen monitors in Bavaria, Germany. Automatic BAA500 and manual Hirst-type pollen traps were run simultaneously at the same locations for one pollen season. Classifications by BAA500 were checked by experts in pollen identification, which is traditionally considered to be the "gold standard" for pollen monitoring. BAA500 had a multiclass accuracy of over 90%. Correct identification of any individual pollen taxa was always >85%, except for Populus (73%) and Alnus (64%). The BAA500 was more precise than the manual method, with less discrepancies between determinations by pairs of automatic pollen monitors than between pairs of humans. The BAA500 was online for 97% of the time. There was a significant correlation of 0.84 between airborne pollen concentrations from the BAA500 and Hirst-type pollen traps. Due to the lack of calibration samples it is unknown which instrument gives the true concentration. The automatic BAA500 network delivered pollen data rapidly (3 h delay with real-time), reliably and online. We consider the ability to retrospectively check the accuracy of the reported classification essential for any automatic system.


Assuntos
Alérgenos , Procedimentos Cirúrgicos Robóticos , Monitoramento Ambiental , Alemanha , Humanos , Pólen , Estudos Retrospectivos , Estações do Ano
11.
Sci Total Environ ; 736: 139363, 2020 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-32485367

RESUMO

Bioinformatics clustering application for mining of a large set of olive pollen aerobiological data to describe the daily distribution of Olea pollen concentration. The study was performed with hourly pollen concentrations measured during 8 years (2011-2018) in Extremadura (Spain). Olea pollen season by quartiles of the pollen integral in preseason (Q1: 0%-25%), in-season (Q2 and Q3: 25%-75%) and postseason (Q4: 75%-100%). Days with pollen concentrations above 100 grains/m3 were clustered according to the daily distribution of the concentrations. The factors affecting the prevalence of the different clusters were analyzed: distance to olive groves and the moment during the pollen season and the meteorology. During the season, the highest hourly concentrations during the day where between 12:00 and 14:00, while during the preseason the highest hourly concentrations were detected in the afternoon and evening hours. In the postseason the pollen concentrations were more homogeneously distributed during 9-16 h. The representation shows a well-defined hourly pattern during the season, but a more heterogeneous distribution during the preseason and postseason. The cluster dendrogram shows that all the days could be clustered in 6 groups: most of the clusters shows the daily peaks between 11:00 and 15:00 with a smooth curve (Cluster 1 and 3) or with a strong peak (2 and 5). Days included in cluster 9 shows an earlier peak in the morning (before 9:00). On the other hand, cluster 6 shows a peak in the afternoon, after 15:00. Hourly concentrations show a sharper pattern during the season, with the peak during the hours close to the emission. Out of the season, when pollen is expected to come from farther distances, the hourly peak is located later from the emission time of the trees. Significant factors for predicting the hourly pattern were wind speed and direction and the distance to the olive groves.


Assuntos
Poluentes Atmosféricos/análise , Olea , Alérgenos/análise , Monitoramento Ambiental , Pólen/química , Estações do Ano , Espanha
13.
Allergy ; 75(2): 259-272, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31230373

RESUMO

Mobile health (mHealth) uses mobile communication devices such as smartphones and tablet computers to support and improve health-related services, data and information flow, patient self-management, surveillance, and disease management from the moment of first diagnosis to an optimized treatment. The European Academy of Allergy and Clinical Immunology created a task force to assess the state of the art and future potential of mHealth in allergology. The task force endorsed the "Be He@lthy, Be Mobile" WHO initiative and debated the quality, usability, efficiency, advantages, limitations, and risks of mobile solutions for allergic diseases. The results are summarized in this position paper, analyzing also the regulatory background with regard to the "General Data Protection Regulation" and Medical Directives of the European Community. The task force assessed the design, user engagement, content, potential of inducing behavioral change, credibility/accountability, and privacy policies of mHealth products. The perspectives of healthcare professionals and allergic patients are discussed, underlining the need of thorough investigation for an effective design of mHealth technologies as auxiliary tools to improve quality of care. Within the context of precision medicine, these could facilitate the change in perspective from clinician- to patient-centered care. The current and future potential of mHealth is then examined for specific areas of allergology, including allergic rhinitis, aerobiology, allergen immunotherapy, asthma, dermatological diseases, food allergies, anaphylaxis, insect venom, and drug allergy. The impact of mobile technologies and associated big data sets are outlined. Facts and recommendations for future mHealth initiatives within EAACI are listed.


Assuntos
Anafilaxia/terapia , Asma/terapia , Urticária Crônica/terapia , Dermatite Alérgica de Contato/terapia , Dermatite Atópica/terapia , Hipersensibilidade a Drogas/terapia , Hipersensibilidade Alimentar/terapia , Rinite Alérgica Sazonal/terapia , Telemedicina/métodos , Dessensibilização Imunológica/métodos , Gerenciamento Clínico , Humanos , Aplicativos Móveis , Relações Médico-Paciente
14.
Sci Total Environ ; 688: 1263-1274, 2019 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-31726556

RESUMO

Airborne pollen is a recognized biological indicator and its monitoring has multiple uses such as providing a tool for allergy diagnosis and prevention. There is a knowledge gap related to the distribution of pollen traps needed to achieve representative biomonitoring in a region. The aim of this manuscript is to suggest a method for setting up a pollen network (monitoring method, monitoring conditions, number and location of samplers etc.). As a case study, we describe the distribution of pollen across Bavaria and the design of the Bavarian pollen monitoring network (ePIN), the first operational automatic pollen network worldwide. We established and ran a dense pollen monitoring network of 27 manual Hirst-type pollen traps across Bavaria, Germany, during 2015. Hierarchical cluster analysis of the data was then performed to select the locations for the sites of the final pollen monitoring network. According to our method, Bavaria can be clustered into three large pollen regions with eight zones. Within each zone, pollen diversity and distribution among different locations does not vary significantly. Based on the pollen zones, we opted to place one automatic monitoring station per zone resulting in the ePIN network, serving 13 million inhabitants. The described method defines stations representative for a homogeneous aeropalynologically region, which reduces redundancy within the network and subsequent costs (in the study case from 27 to 8 locations). Following this method, resources in pollen monitoring networks can be optimized and allergic citizens can then be informed in a timely and effective way, even in larger geographical areas.


Assuntos
Poluentes Atmosféricos/análise , Alérgenos/análise , Monitoramento Ambiental , Pólen , Poluição do Ar , Alemanha
15.
Environ Res ; 174: 160-169, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31077991

RESUMO

The effect of height on pollen concentration is not well documented and little is known about the near-ground vertical profile of airborne pollen. This is important as most measuring stations are on roofs, but patient exposure is at ground level. Our study used a big data approach to estimate the near-ground vertical profile of pollen concentrations based on a global study of paired stations located at different heights. We analyzed paired sampling stations located at different heights between 1.5 and 50 m above ground level (AGL). This provided pollen data from 59 Hirst-type volumetric traps from 25 different areas, mainly in Europe, but also covering North America and Australia, resulting in about 2,000,000 daily pollen concentrations analyzed. The daily ratio of the amounts of pollen from different heights per location was used, and the values of the lower station were divided by the higher station. The lower station of paired traps recorded more pollen than the higher trap. However, while the effect of height on pollen concentration was clear, it was also limited (average ratio 1.3, range 0.7-2.2). The standard deviation of the pollen ratio was highly variable when the lower station was located close to the ground level (below 10 m AGL). We show that pollen concentrations measured at >10 m are representative for background near-ground levels.


Assuntos
Monitoramento Ambiental , Pólen , Alérgenos , Austrália , Europa (Continente) , Humanos , Estações do Ano , Manejo de Espécimes
16.
J Allergy Clin Immunol ; 143(1): 369-377.e5, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30012513

RESUMO

BACKGROUND: Endotoxin (LPS) released from gram-negative bacteria causes strong immunologic and inflammatory effects and, when airborne, can contribute to respiratory conditions, such as allergic asthma. OBJECTIVES: We sought to identify the source of airborne endotoxin and the effect of this endotoxin on allergic sensitization. METHODS: We determined LPS levels in outdoor air on a daily basis for 4 consecutive years in Munich (Germany) and Davos (Switzerland). Air was sampled as particulate matter (PM) greater than 10 µm (PM > 10) and PM between 2.5 and 10 µm. LPS levels were determined by using the recombinant Factor C assay. RESULTS: More than 60% of the annual endotoxin exposure was detected in the PM > 10 fraction, showing that bacteria do not aerosolize as independent units or aggregates but adhered to large particles. In Munich 70% of annual exposure was detected between June 12th and August 28th. Multivariate modeling showed that endotoxin levels could be explained by phenological parameters (ie, plant growth). Indeed, days with high airborne endotoxin levels correlated well with the amount of Artemisia pollen in the air. Pollen collected from plants across Europe (100 locations) showed that the highest levels of endotoxin were detected on Artemisia vulgaris (mugwort) pollen, with little on other pollen. Microbiome analysis showed that LPS concentrations on mugwort pollen were related to the presence of Pseudomonas species and Pantoea species communities. In a mouse model of allergic disease, the presence of LPS on mugwort pollen was needed for allergic sensitization. CONCLUSIONS: The majority of airborne endotoxin stems from bacteria dispersed with pollen of only one plant: mugwort. This LPS was essential for inducing inflammation of the lung and allergic sensitization.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Lipopolissacarídeos , Material Particulado , Pólen , Animais , Artemisia/química , Artemisia/imunologia , Artemisia/microbiologia , Asma/imunologia , Asma/microbiologia , Alemanha , Humanos , Lipopolissacarídeos/química , Lipopolissacarídeos/imunologia , Camundongos Endogâmicos BALB C , Pantoea/imunologia , Material Particulado/química , Material Particulado/imunologia , Pólen/química , Pólen/imunologia , Pólen/microbiologia , Pseudomonas/imunologia
18.
Sci Total Environ ; 576: 637-645, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27810751

RESUMO

Mapping pollen concentrations is of great interest to study the health impact and ecological implications or for forestry or agronomical purposes. A deep knowledge about factors affecting airborne pollen is essential for predicting and understanding its dynamics. The present work sought to predict annual Quercus pollen over the Castilla and León region (Central and Northern Spain). Also to understand the relationship between airborne pollen and landscape. Records of Quercus and Quercus pyrenaica pollen types were collected at 13 monitoring sites over a period of 8years. They were analyzed together with land use data applying the Concentric Ring Method (CRM), a technique that we developed to study the relationship between airborne particle concentrations and emission sources in the region. The maximum correlation between the Quercus pollen and forms of vegetation was determined by shrubland and "dehesa" areas. For the specific Qi pyrenaica model (Q. pyrenaica pollen and Q. pyrenaica forest distribution), the maximum influence of emission sources on airborne pollen was observed at 14km from the pollen trap location with some positive correlations up to a distance of 43km. Apart from meteorological behavior, the local features of the region can explain pollen dispersion patterns. The method that we develop here proved to be a powerful tool for multi-source pollen mapping based on land use.

19.
Sci Total Environ ; 548-549: 221-228, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26802350

RESUMO

Airborne pollen concentrations strongly correlate with flowering intensity of wind-pollinated species growing at and around monitoring sites. The pollen spectrum, and the variations in its composition and concentrations, is influenced by climatic features and by available nutritional resources but it is also determined by land use and its changes. The first factor influence is well known on aerobiological researches but the impact of land cover changes has been scarcely studied until now. This paper reports on a study carried out in Southern Spain (Córdoba city) examining airborne pollen trends over a 15-year period and it explores the possible links both to changes in land use and to climate variations. The Seasonal-Trend Decomposition procedure based on Loess (STL) which decomposes long-term data series into smaller seasonal component patterns was applied. Trends were compared with recorded changes in land use at varying distances from the city in order to determine their possible influence on pollen-count variations. The influence of climate-related factors was determined by means of non-parametric correlation analysis. The STL method proved highly effective for extracting trend components from pollen time series, because their features vary widely and can change quickly in a short term. Results revealed mixed trends depending on the taxa and reflecting fluctuations in land cover and/or climate. A significant rising trend in Olea pollen counts was observed, attributable both to the increasing olive-growing area but also to changes in temperature and rainfall. Poaceae pollen concentrations also increased, due largely to an expansion of heterogeneous agricultural areas and to an increase in pollen season length positively influenced by rainfall and temperature. By contrast, the significant declining trend observed for pollen from ruderal taxa, such as Amaranthaceae, Rumex, Plantago and Urticaceae, may be linked to changes in urban planning strategies with a higher building pressure.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Alérgenos/análise , Monitoramento Ambiental , Pólen , Cidades , Olea , Estações do Ano , Espanha
20.
Ann Agric Environ Med ; 22(3): 421-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26403107

RESUMO

INTRODUCTION: Modifications of crop species phenology due to a changing environment are of interest because of their impact on fruit set and final harvest. Pre-flowering and flowering phenophases in olive groves at different sites of southern Spain were examined, in order to chart potential trends and determine major correlations with weather-related parameters, especially temperature and water availability. The high prevalence of olive pollen allergy in the Mediterranean population makes this study highly relevant. MATERIALS AND METHODS: Ten sites in Cordoba province (Spain) during a 17-year period (1996-2012). BBCH phenology scale. Meteorological data from 1960 were analyzed; data from 1996 included on modeling analysis. Linear Mixed Models (LMMs) were developed, combining phenological and meteorological data. RESULTS: Since 1960, local spring temperatures have increased 1.5ºC, the number of spring rainfall days has fallen 11 days, total rainfall has declined 150 mm. Despite phenological differences between sites, attributable to altitude, phenological development during the season followed a similar pattern. Flowering dates advanced 2 days, while inflorescence emergence was delayed 24 days. Trend slopes revealed differences, an earlier period (1996-2002) with a sharp flowering advance of 15 days, and a later period (2003-2012) characterized by a gradual advance and a high bud emergence delay of 22 days. CONCLUSIONS: LMMs was revealed as an appropriate technique for phenology behaviour analysis displaying both fixed and random interactions. Cultivars grown in the study province are adapted to climate with a synchronized response, although climate change is affecting theolive reproductive cycle in southern Spain; therefore, the timing of pollen release, with subsequent consequences on allergic population as phenological changes, could have impacts on flowering period and pollen production. Further investigation is required of the implications for crop production in Mediterranean ecosystems.


Assuntos
Mudança Climática , Olea/fisiologia , Pólen/fisiologia , Alérgenos/fisiologia , Olea/crescimento & desenvolvimento , Reprodução , Estações do Ano , Espanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...