Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 13(6): e0199294, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29928018

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a hepatic manifestation of metabolic syndrome and major cause of chronic liver disease in developed countries. Its prevalence is increasing in parallel with the prevalence of obesity and other components of the metabolic syndrome. As the liver is central to the clearance and catabolism of circulating advanced glycosylation end-products (AGEs), AGEs and their cognate receptors-RAGE (receptor for AGEs) system might be involved in NAFLD in obese patients. To examine this, we investigated four common polymorphisms of RAGE gene: 1704G/T (rs184003), G82S (rs2070600), -374T/A (rs1800624) and -429T/C (rs1800625) in 340 obese patients with metabolic syndrome. and protein levels of AGE and RAGE. This is the first study to describe association of 4 common polymorphisms with non-alcoholic steatohepatitis (NASH) as well as to examine protein levels of RAGE and AGE. Univariate analysis showed patients carrying the rs1800624 heterozygote genotype (AT) exhibited 2.36-fold increased risk of NASH (odds ratio (OR) = 2.36; 95% confidence interval (95% CI): 1.35-4.19) after adjusting for confounders. The minor allele -374 A has been shown to suppress the expression of RAGE protein. The protein levels of esRAGE, total sRAGE and AGE protein levels did not correlate with each other in obese patients with no liver disease, indicative of RAGE signaling playing an independent role in liver injury. In obese patients with non-NASH NAFLD and NASH respectively, esRAGE protein showed strong positive correlation with total sRAGE protein. Further, haplotype analysis of the 4 SNPs, indicated that haplotype G-A-T-G was significantly associated with 2-fold increased risk for NASH (OR = 2.08; 95% CI: 1.21-3.5; P = 0.006) after adjusting for confounders. In conclusion, the presented data indicate that the G-A-T-G haplotype containing minor allele at position -374 A and major allele at position -429T, 1704G, and G82S G could be regarded as a marker for NASH.


Assuntos
Antígenos de Neoplasias/genética , Predisposição Genética para Doença , Proteínas Quinases Ativadas por Mitógeno/genética , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/genética , Polimorfismo de Nucleotídeo Único/genética , Antígenos de Neoplasias/sangue , Distribuição de Qui-Quadrado , Estudos de Coortes , Feminino , Frequência do Gene/genética , Estudos de Associação Genética , Haplótipos/genética , Humanos , Desequilíbrio de Ligação/genética , Masculino , Pessoa de Meia-Idade , Proteínas Quinases Ativadas por Mitógeno/sangue , Análise Multivariada , Obesidade/genética
2.
BMC Med Genet ; 17(1): 63, 2016 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-27596100

RESUMO

BACKGROUND: Visceral obesity and metabolic syndrome are commonly associated with non-alcoholic fatty liver disease (NAFLD). The progression of steatosis to NASH depends on a number of metabolic and patient-related factors. The mechanisms of genetic predisposition towards the development of NASH and related fibrosis remain unclear. In this study, our aim was to utilize mitotyping and identify mitochondrial haplotypes that may be associated with NAFLD. METHODS: We examined mitochondrial haplotypes along with patatin-like phospholipase domain containing 3 (PNPLA3) rs738409 genotype to determine their association with NAFLD phenotypes. Whole blood samples were obtained from 341 patients (BMI > 35) undergoing weight reduction surgery after written consent. Liver biopsies were centrally reviewed by a single pathologist based on predetermined pathologic protocol (41.9 % Non-NASH NAFLD, 30.4 % NASH, 27.5 % controls). A 1,122 bp of the mitochondrial control loop was sequenced for each sample and classified into haplogroups. RESULTS: The presence of haplogroup L exhibits protection against the development of NASH and pericellular fibrosis. The alleles of PNPLA3 locus showed differential distribution in cohorts with NAFLD, NASH and pericellular fibrosis. Heterozygosity at this locus is independently associated with higher risk of having NASH and pericellular fibrosis. CONCLUSION: Mitochondrial genetics play an important role in NASH probably by modulation of oxidative stress and the efficiency of oxidative phosphorylation.


Assuntos
Genoma Mitocondrial , Lipase/genética , Proteínas de Membrana/genética , Mitocôndrias/genética , Hepatopatia Gordurosa não Alcoólica/genética , Polimorfismo de Nucleotídeo Único , Adulto , Biópsia , Feminino , Predisposição Genética para Doença , Genômica/métodos , Haplótipos , Humanos , Fígado/patologia , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/patologia , Análise de Sequência de DNA/métodos
3.
BMJ Open Gastroenterol ; 3(1): e000096, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27493762

RESUMO

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of metabolic syndrome and coronary artery disease (CAD) is the cardiac manifestation of metabolic syndrome. NAFLD is strongly linked to CAD and hepatic steatosis is an independent risk factor for CAD and cardiac mortality. The pathogenic mechanism underlying this association remains poorly understood. In this study, we explored expression of circulating microRNAs (miRNAs) in patients with NAFLD and associated CAD. RESULTS: When compared to patients with NAFLD without CAD, patients with NAFLD and CAD had lower circulating levels of miR-132 (0.24±0.16 vs 0.30±0.11, p=0.03), while the circulating levels of miR-143 were higher (0.96±0.90 vs 0.64±0.77, p=0.02). The levels in circulation demonstrated trends opposite to previously observed intracellular levels in patients with CAD. In obese patients with NAFLD, lower circulating levels of miR-145 (1.42±1.00 vs 2.41±1.80), miR-211 (41.26±20.40 vs 57.56±25.45), miR-146a (2.13±1.40 vs 2.90±1.36) and miR-30c (6.92±4.99 vs 11.0±6.92) were detected when compared to lean patients with NAFLD. For miR-161 (0.59±1.19 vs 0.15±0.14) and miR-241 (0.28±0.29 vs 0.16±0.13), higher circulatory levels were detected in the obese patients with NAFLD. These observations suggest altered circulating levels of miRNAs that may serve to balance intracellular levels of miRNA in target tissues. Additional studies examining paired samples of target and producing tissues as well as respective plasma samples will help delineate the regulatory circuits governing the secretion and the uptake of miRNA in multitissue diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...