Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 232, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438546

RESUMO

Two-photon microscopy enables in vivo imaging of neuronal activity in mammalian brains at high resolution. However, two-photon imaging tools for stable, long-term, and simultaneous study of multiple brain regions in same mice are lacking. Here, we propose a method to create large cranial windows covering such as the whole parietal cortex and cerebellum in mice using fluoropolymer nanosheets covered with light-curable resin (termed the 'Nanosheet Incorporated into light-curable REsin' or NIRE method). NIRE method can produce cranial windows conforming the curved cortical and cerebellar surfaces, without motion artifacts in awake mice, and maintain transparency for >5 months. In addition, we demonstrate that NIRE method can be used for in vivo two-photon imaging of neuronal ensembles, individual neurons and subcellular structures such as dendritic spines. The NIRE method can facilitate in vivo large-scale analysis of heretofore inaccessible neural processes, such as the neuroplastic changes associated with maturation, learning and neural pathogenesis.


Assuntos
Artefatos , Polímeros de Fluorcarboneto , Animais , Camundongos , Encéfalo/diagnóstico por imagem , Cerebelo , Resinas Vegetais , Neuroimagem , Mamíferos
2.
Biomed Opt Express ; 15(2): 1089-1101, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38404301

RESUMO

This study presents an alternative approach for two-photon volumetric imaging that combines multibeam lateral scanning with continuous axial scanning using a confocal spinning-disk scanner and an electrically focus tunable lens. Using this proposed system, the brain of a living mouse could be imaged at a penetration depth of over 450 µm from the surface. In vivo volumetric Ca2+ imaging at a volume rate of 1.5 Hz within a depth range of 130-200 µm, was segmented with an axial pitch of approximately 5-µm and revealed spontaneous activity of neurons with their 3D positions. This study offers a practical microscope design equipped with compact scanners, a simple control system, and readily adjustable imaging parameters, which is crucial for the widespread adoption of two-photon volumetric imaging.

3.
PLoS One ; 18(8): e0290550, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37616194

RESUMO

Super-resolution in two-photon excitation (2PE) microscopy offers new approaches for visualizing the deep inside the brain functions at the nanoscale. In this study, we developed a novel 2PE stimulated-emission-depletion (STED) microscope with all-synchronized picosecond pulse light sources and time-gated fluorescence detection, namely, all-pulsed 2PE-gSTED microscopy. The implementation of time-gating is critical to excluding undesirable signals derived from brain tissues. Even in a case using subnanosecond pulses for STED, the impact of time-gating was not negligible; the spatial resolution in the image of the brain tissue was improved by approximately 1.4 times compared with non time-gated image. This finding demonstrates that time-gating is more useful than previously thought for improving spatial resolution in brain tissue imaging. This microscopy will facilitate deeper super-resolution observation of the fine structure of neuronal dendritic spines and the intracellular dynamics in brain tissue.


Assuntos
Utensílios Domésticos , Microscopia , Encéfalo/diagnóstico por imagem , Frequência Cardíaca , Fótons
4.
Biophys Physicobiol ; 20(1): e200009, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37234851

RESUMO

Two-photon excitation laser scanning microscopy (TPLSM) has provided many insights into the life sciences, especially for thick biological specimens, because of its superior penetration depth and less invasiveness owing to the near-infrared wavelength of its excitation laser light. This paper introduces our four kinds of studies to improve TPLSM by utilizing several optical technologies as follows: (1) A high numerical aperture objective lens significantly deteriorates the focal spot size in deeper regions of specimens. Thus, approaches to adaptive optics were proposed to compensate for optical aberrations for deeper and sharper intravital brain imaging. (2) TPLSM spatial resolution has been improved by applying super-resolution microscopic techniques. We also developed a compact stimulated emission depletion (STED) TPLSM that utilizes electrically controllable components, transmissive liquid crystal devices, and laser diode-based light sources. The spatial resolution of the developed system was five times higher than conventional TPLSM. (3) Most TPLSM systems adopt moving mirrors for single-point laser beam scanning, resulting in the temporal resolution caused by the limited physical speed of these mirrors. For high-speed TPLSM imaging, a confocal spinning-disk scanner and newly-developed high-peak-power laser light sources enabled approximately 200 foci scanning. (4) Several researchers have proposed various volumetric imaging technologies. However, most technologies require large-scale and complicated optical setups based on deep expertise for microscopic technologies, resulting in a high threshold for biologists. Recently, an easy-to-use light-needle-creating device was proposed for conventional TPLSM systems to achieve one-touch volumetric imaging.

5.
J Phys Chem B ; 127(22): 4959-4965, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37222077

RESUMO

We observed the mid-infrared (MIR) response of a single pigment of bacteriochlorophyll a at the B800 binding site of a light-harvesting 2 complex. At a temperature of 1.5 K, a single complex in a spatially isolated spot in a near-infrared (NIR) fluorescence image was selected and was simultaneously irradiated with MIR and NIR light. We found that the temporal behavior of the NIR fluorescence excitation spectrum of individual pigments in a single complex was modulated by the MIR irradiation at 1650 cm-1. The MIR modulation of a single pigment was linearly proportional to the MIR intensity. The MIR linear response was detected in the range from 1580 to 1670 cm-1.


Assuntos
Bacterioclorofila A , Complexos de Proteínas Captadores de Luz , Complexos de Proteínas Captadores de Luz/química , Fluorescência , Bacterioclorofila A/química , Sítios de Ligação , Proteínas de Bactérias/química , Bacterioclorofilas/metabolismo
6.
Sci Rep ; 12(1): 10468, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729283

RESUMO

Biological tissues and their networks frequently change dynamically across large volumes. Understanding network operations requires monitoring their activities in three dimensions (3D) with single-cell resolution. Several researchers have proposed various volumetric imaging technologies. However, most technologies require large-scale and complicated optical setups, as well as deep expertise for microscopic technologies, resulting in a high threshold for biologists. In this study, we propose an easy-to-use light-needle creating device for conventional two-photon microscopy systems. By only installing the device in one position for a filter cube that conventional fluorescent microscopes have, single scanning of the excitation laser light beam excited fluorophores throughout over 200 µm thickness specimens simultaneously. Furthermore, the developed microscopy system successfully demonstrated single-scan visualization of the 3D structure of transparent YFP-expressing brain slices. Finally, in acute mouse cortical slices with a thickness of approximately 250 µm, we detected calcium activities with 7.5 Hz temporal resolution in the neuronal population.


Assuntos
Neurônios , Tato , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/ultraestrutura , Camundongos , Microscopia de Fluorescência/métodos , Neurônios/fisiologia , Fótons
7.
Sci Rep ; 12(1): 809, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35039530

RESUMO

Non-linear microscopy, such as multi-photon excitation microscopy, offers spatial localities of excitations, thereby achieving 3D cross-sectional imaging with low phototoxicity even in thick biological specimens. We had developed a multi-point scanning two-photon excitation microscopy system using a spinning-disk confocal scanning unit. However, its severe color cross-talk has precluded multi-color simultaneous imaging. Therefore, in this study, we introduced a mechanical switching system to select either of two NIR laser light pulses and an image-splitting detection system for 3- or 4-color imaging. As a proof of concept, we performed multi-color fluorescent imaging of actively dividing human HeLa cells and tobacco BY-2 cells. We found that the proposed microscopy system enabled time-lapse multi-color 3D imaging of cell divisions while avoiding photodamage. Moreover, the application of a linear unmixing method to the 5D dataset enabled the precise separation of individual intracellular components in multi-color images. We thus demonstrated the versatility of our new microscopy system in capturing the dynamic processes of cellular components that could have multitudes of application.


Assuntos
Imageamento Tridimensional/métodos , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Mitose/fisiologia , Organelas/ultraestrutura , Cor , Conjuntos de Dados como Assunto , Células HeLa , Humanos , Lasers , Fótons
8.
Neurosci Res ; 179: 24-30, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34861295

RESUMO

Multiphoton microscopy has become a powerful tool for visualizing neurobiological phenomena such as the dynamics of individual synapses and the functional activities of neurons. Owing to its near-infrared excitation laser wavelength, multiphoton microscopy achieves greater penetration depth and is less invasive than single-photon excitation. Here, we review the principles of two-photon microscopy and its technical limitations (penetration depth and spatial resolution) on brain tissue imaging. We then describe the technological improvements of two-photon microscopy that enable deeper imaging with higher spatial resolution for investigating unrevealed brain functions.


Assuntos
Microscopia de Fluorescência por Excitação Multifotônica , Neurônios , Encéfalo/diagnóstico por imagem , Microscopia de Fluorescência por Excitação Multifotônica/métodos
9.
STAR Protoc ; 2(2): 100542, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34027495

RESUMO

Large-scale optical measurements have revealed the anatomical and functional connectivity among brain regions underlying brain functions. Here, we describe how to construct a cranial window utilizing a polyethylene-oxide-coated CYTOP (PEO-CYTOP) nanosheet that suppresses bleeding on the brain surface of mice. We demonstrate in vivo two-photon imaging through the PEO-CYTOP nanosheet at the subcellular resolution in the parietal region of the mouse brain. This protocol improves the surgical procedure and expands the optically observable regions, thereby promoting understanding of brain function. For complete details on the use and execution of this protocol, please refer to Takahashi et al. (2020).


Assuntos
Encéfalo/diagnóstico por imagem , Nanoestruturas/química , Imagem Óptica/métodos , Crânio/cirurgia , Animais , Camundongos , Microscopia de Fluorescência por Excitação Multifotônica , Polietilenoglicóis/química
10.
Elife ; 102021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33781383

RESUMO

Despite recent improvements in microscope technologies, segmenting and tracking cells in three-dimensional time-lapse images (3D + T images) to extract their dynamic positions and activities remains a considerable bottleneck in the field. We developed a deep learning-based software pipeline, 3DeeCellTracker, by integrating multiple existing and new techniques including deep learning for tracking. With only one volume of training data, one initial correction, and a few parameter changes, 3DeeCellTracker successfully segmented and tracked ~100 cells in both semi-immobilized and 'straightened' freely moving worm's brain, in a naturally beating zebrafish heart, and ~1000 cells in a 3D cultured tumor spheroid. While these datasets were imaged with highly divergent optical systems, our method tracked 90-100% of the cells in most cases, which is comparable or superior to previous results. These results suggest that 3DeeCellTracker could pave the way for revealing dynamic cell activities in image datasets that have been difficult to analyze.


Microscopes have been used to decrypt the tiny details of life since the 17th century. Now, the advent of 3D microscopy allows scientists to build up detailed pictures of living cells and tissues. In that effort, automation is becoming increasingly important so that scientists can analyze the resulting images and understand how bodies grow, heal and respond to changes such as drug therapies. In particular, algorithms can help to spot cells in the picture (called cell segmentation), and then to follow these cells over time across multiple images (known as cell tracking). However, performing these analyses on 3D images over a given period has been quite challenging. In addition, the algorithms that have already been created are often not user-friendly, and they can only be applied to a specific dataset gathered through a particular scientific method. As a response, Wen et al. developed a new program called 3DeeCellTracker, which runs on a desktop computer and uses a type of artificial intelligence known as deep learning to produce consistent results. Crucially, 3DeeCellTracker can be used to analyze various types of images taken using different types of cutting-edge microscope systems. And indeed, the algorithm was then harnessed to track the activity of nerve cells in moving microscopic worms, of beating heart cells in a young small fish, and of cancer cells grown in the lab. This versatile tool can now be used across biology, medical research and drug development to help monitor cell activities.


Assuntos
Rastreamento de Células/métodos , Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imagem com Lapso de Tempo/métodos , Animais , Encéfalo/diagnóstico por imagem , Caenorhabditis elegans/citologia , Rastreamento de Células/instrumentação , Coração/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/instrumentação , Imageamento Tridimensional/instrumentação , Esferoides Celulares , Imagem com Lapso de Tempo/instrumentação , Células Tumorais Cultivadas , Peixe-Zebra
11.
ACS Omega ; 6(1): 438-447, 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33458495

RESUMO

We developed adaptive optical (AO) two-photon excitation microscopy by introducing a spatial light modulator (SLM) in a commercially available microscopy system. For correcting optical aberrations caused by refractive index (RI) interfaces at a specimen's surface, spatial phase distributions of the incident excitation laser light were calculated using 3D coordination of the RI interface with a 3D ray-tracing method. Based on the calculation, we applied a 2D phase-shift distribution to a SLM and achieved the proper point spread function. AO two-photon microscopy improved the fluorescence image contrast in optical phantom mimicking biological specimens. Furthermore, it enhanced the fluorescence intensity from tubulin-labeling dyes in living multicellular tumor spheroids and allowed successful visualization of dendritic spines in the cortical layer V of living mouse brains in the secondary motor region with a curved surface. The AO approach is useful for observing dynamic physiological activities in deep regions of various living biological specimens with curved surfaces.

12.
Plant Cell Physiol ; 62(2): 229-247, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33355344

RESUMO

In autophagy, cytoplasmic components of eukaryotic cells are transported to lysosomes or the vacuole for degradation. Autophagy is involved in plant tolerance to the photooxidative stress caused by ultraviolet B (UVB) radiation, but its roles in plant adaptation to UVB damage have not been fully elucidated. Here, we characterized organellar behavior in UVB-damaged Arabidopsis (Arabidopsis thaliana) leaves and observed the occurrence of autophagic elimination of dysfunctional mitochondria, a process termed mitophagy. Notably, Arabidopsis plants blocked in autophagy displayed increased leaf chlorosis after a 1-h UVB exposure compared to wild-type plants. We visualized autophagosomes by labeling with a fluorescent protein-tagged autophagosome marker, AUTOPHAGY8 (ATG8), and found that a 1-h UVB treatment led to increased formation of autophagosomes and the active transport of mitochondria into the central vacuole. In atg mutant plants, the mitochondrial population increased in UVB-damaged leaves due to the cytoplasmic accumulation of fragmented, depolarized mitochondria. Furthermore, we observed that autophagy was involved in the removal of depolarized mitochondria when mitochondrial function was disrupted by mutation of the FRIENDLY gene, which is required for proper mitochondrial distribution. Therefore, autophagy of mitochondria functions in response to mitochondrion-specific dysfunction as well as UVB damage. Together, these results indicate that autophagy is centrally involved in mitochondrial quality control in Arabidopsis leaves.


Assuntos
Autofagia/fisiologia , Mitocôndrias/fisiologia , Folhas de Planta/fisiologia , Arabidopsis/fisiologia , Mitocôndrias/efeitos da radiação , Mitofagia/fisiologia , Folhas de Planta/citologia , Folhas de Planta/efeitos da radiação , Raios Ultravioleta/efeitos adversos
13.
iScience ; 23(10): 101579, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33083745

RESUMO

In vivo two-photon deep imaging with a broad field of view has revealed functional connectivity among brain regions. Here, we developed a novel observation method that utilizes a polyethylene-oxide-coated CYTOP (PEO-CYTOP) nanosheet with a thickness of ∼130 nm that exhibited a water retention effect and a hydrophilized adhesive surface. PEO-CYTOP nanosheets firmly adhered to brain surfaces, which suppressed bleeding from superficial veins. By taking advantage of the excellent optical properties of PEO-CYTOP nanosheets, we performed in vivo deep imaging in mouse brains at high resolution. Moreover, PEO-CYTOP nanosheets enabled to prepare large cranial windows, achieving in vivo imaging of neural structure and Ca2+ elevation in a large field of view. Furthermore, the PEO-CYTOP nanosheets functioned as a sealing material, even after the removal of the dura. These results indicate that this method would be suitable for the investigation of neural functions that are composed of interactions among multiple regions.

14.
PLoS One ; 15(8): e0237230, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32764808

RESUMO

In vivo two-photon microscopy utilizing a nonlinear optical process enables, in living mouse brains, not only the visualization of morphologies and functions of neural networks in deep regions but also their optical manipulation at targeted sites with high spatial precision. Because the two-photon excitation efficiency is proportional to the square of the photon density of the excitation laser light at the focal position, optical aberrations induced by specimens mainly limit the maximum depth of observations or that of manipulations in the microscopy. To increase the two-photon excitation efficiency, we developed a method for evaluating the focal volume in living mouse brains. With this method, we modified the beam diameter of the excitation laser light and the value of the refractive index in the immersion liquid to maximize the excitation photon density at the focal position. These two modifications allowed the successful visualization of the finer structures of hippocampal CA1 neurons, as well as the intracellular calcium dynamics in cortical layer V astrocytes, even with our conventional two-photon microscopy system. Furthermore, it enabled focal laser ablation dissection of both single apical and single basal dendrites of cortical layer V pyramidal neurons. These simple modifications would enable us to investigate the contributions of single cells or single dendrites to the functions of local cortical networks.


Assuntos
Encéfalo/ultraestrutura , Microscopia de Fluorescência por Excitação Multifotônica/instrumentação , Animais , Desenho de Equipamento , Feminino , Masculino , Camundongos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Neurônios/ultraestrutura , Fótons
15.
Biochem Biophys Res Commun ; 529(2): 238-242, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32703417

RESUMO

High-speed imaging of living specimen was performed using two-photon microscopy equipped with a spinning-disk scanning unit. Typically, a high-peak-power laser light source is needed to simultaneously induce two-photon excitation processes at several hundred focal points, generating the limitations of excitable fluorophores. Therefore, a high-peak-power neodymium-based 918-nm laser light source was used for intravital imaging of the most popular fluorophores, green fluorescent proteins. As a result, the proposed system obtained approximately 30 times brighter fluorescent signal than that obtained using a conventional mode-locked titanium:sapphire laser light source. Furthermore, the system visualized four-dimensional (xyz-t) calcium responses of pancreatic acinar cells agonist stimulations in the living G-CaMP7-expressing mouse with 60 million µm3 volume.


Assuntos
Corantes Fluorescentes/análise , Proteínas de Fluorescência Verde/análise , Microscopia de Fluorescência/instrumentação , Células Acinares/ultraestrutura , Animais , Desenho de Equipamento , Lasers , Camundongos , Pâncreas/ultraestrutura , Pele/ultraestrutura
16.
ACS Omega ; 5(5): 2473-2479, 2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-32064407

RESUMO

We report on the absorption, fluorescence, and two-photon excitation spectra of a series of 5-phenylisoindolo[2,1-a]quinoline dyes. Depending on the substituents, we observed increasing two-photon absorption cross sections, with values up to 56 GM@973 nm, which are similar to those of the enhanced green fluorescent protein and fluorescein, common fluorescent chromophores.

17.
PLoS One ; 15(1): e0227650, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31923215

RESUMO

In order to achieve deep tissue imaging, a number of optical clearing agents have been developed. However, in a conventional microscopy setup, an objective lens can only be moved until it is in contact with a coverslip, which restricts the maximum focusing depth into a cleared tissue specimen. Until now, it is still a fact that the working distance of a high magnification objective lens with a high numerical aperture is always about 100 µm. In this study, a polymer thin film (also called as nanosheet) composed of fluoropolymer with a thickness of 130 nm, less than one-thousandth that of a 170 µm thick coverslip, is employed to replace the coverslip. Owing to its excellent characteristics, such as high optical transparency, mechanical robustness, chemical resistance, and water retention ability, nanosheet is uniquely capable of providing a coverslip-free imaging. By wrapping the tissue specimen with a nanosheet, an extra distance of 170 µm for the movement of objective lens is obtained. Results show an equivalently high resolution imaging can be obtained if a homogenous refractive index between immersion liquid and mounting media is adjusted. This method will facilitate a variety of imaging tasks with off-the-shelf high magnification objectives.


Assuntos
Microscopia de Fluorescência/métodos , Microscopia/métodos , Lentes , Nanoestruturas , Polietileno , Refratometria
18.
Curr Biol ; 29(23): 4060-4070.e3, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31735673

RESUMO

Cytokinesis is fundamental for cell proliferation [1, 2]. In plants, a bipolar short-microtubule array forms the phragmoplast, which mediates vesicle transport to the midzone and guides the formation of cell walls that separate the mother cell into two daughter cells [2]. The phragmoplast centrifugally expands toward the cell cortex to guide cell-plate formation at the cortical division site [3, 4]. Several proteins in the phragmoplast midzone facilitate the anti-parallel bundling of microtubules and vesicle accumulation [5]. However, the mechanisms by which short microtubules are maintained during phragmoplast development, in particular, the behavior of microtubules at the distal zone of phragmoplasts, are poorly understood. Here, we show that a plant-specific protein, CORTICAL MICROTUBULE DISORDERING 4 (CORD4), tethers the conserved microtubule-severing protein katanin to facilitate formation of the short-microtubule array in phragmoplasts. CORD4 was specifically expressed during mitosis and localized to preprophase bands and phragmoplast microtubules. Custom-made two-photon spinning disk confocal microscopy revealed that CORD4 rapidly localized to microtubules in the distal phragmoplast zone during phragmoplast assembly at late anaphase and persisted throughout phragmoplast expansion. Loss of CORD4 caused abnormally long and oblique phragmoplast microtubules and slow expansion of phragmoplasts. The p60 katanin subunit, KTN1, localized to the distal phragmoplast zone in a CORD4-dependent manner. These results suggest that CORD4 tethers KTN1 at phragmoplasts to modulate microtubule length, thereby accelerating phragmoplast growth. This reveals the presence of a distinct machinery to accelerate cytokinesis by regulating the action of katanin.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Citocinese/genética , Expressão Gênica , Katanina/genética , Proteínas Associadas aos Microtúbulos/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Perfilação da Expressão Gênica , Katanina/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
19.
Biomed Opt Express ; 10(7): 3104-3113, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31467771

RESUMO

We developed two-photon excitation stimulated emission depletion (STED) nanoscopy using high-peak-power sub-nanosecond 655-nm pulses. The STED pulse exhibited ideal optical properties and sufficient pulse energy to realize a 70-nm spatial resolution in the compact setup with electrically controllable components. For biological applications, we screened suitable fluorescent dyes or proteins and realized the sub-100 nm spatial resolution imaging of presynaptic protein clusters in fixed primary cultured neurons without severe photobleaching. We expect this method to enable visualization of ultrastructures and the cluster dynamics of biomolecules representing physiological functions in living cells and tissue.

20.
Exp Cell Res ; 376(1): 67-76, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30711568

RESUMO

Nonmuscle myosin II (NMII) plays an important role in cytokinesis by constricting a contractile ring. However, it is poorly understood how NMII isoforms contribute to cytokinesis in mammalian cells. Here, we investigated the roles of the two major NMII isoforms, NMIIA and NMIIB, in cytokinesis using a WI-38 VA13 cell line (human immortalized fibroblast). In this cell line, NMIIB tended to localize to the contractile ring more than NMIIA. The expression level of NMIIA affected the localization of NMIIB. Most NMIIB accumulated at the cleavage furrow in NMIIA-knockout (KO) cells, and most NMIIA was displaced from this location in exogenous NMIIB-expressing cells, indicating that NMIIB preferentially localizes to the contractile ring. Specific KO of each isoform elicited opposite effects. The rate of furrow ingression was decreased and increased in NMIIA-KO and NMIIB-KO cells, respectively. Meanwhile, the length of NMII-filament stacks in the contractile ring was increased and decreased in NMIIA-KO and NMIIB-KO cells, respectively. Moreover, NMIIA helped to maintain cortical stiffness during cytokinesis. These findings suggest that appropriate ratio of NMIIA and NMIIB in the contractile ring is important for proper cytokinesis in specific cell types. In addition, two-photon excitation spinning-disk confocal microscopy enabled us to image constriction of the contractile ring in live cells in a three-dimensional manner.


Assuntos
Citocinese/genética , Contração Muscular/genética , Miosina não Muscular Tipo IIA/genética , Miosina não Muscular Tipo IIB/genética , Citoesqueleto de Actina/genética , Linhagem Celular , Linhagem da Célula/genética , Fibroblastos/metabolismo , Regulação da Expressão Gênica/genética , Técnicas de Inativação de Genes , Humanos , Isoformas de Proteínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...