Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 290(2002): 20230442, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37403506

RESUMO

Predation can have both lethal and non-lethal effects on prey. The non-lethal effects of predation can instil changes in prey life history, behaviour, morphology and physiology, causing adaptive evolution. The chronic stress caused by sustained predation on prey is comparable to chronic stress conditions in humans. Conditions like anxiety, depression, and post-traumatic stress syndrome have also been implicated in the development of metabolic disorders such as obesity and diabetes. In this study, we found that predator stress induced during larval development in fruit flies Drosophila melanogaster impairs carbohydrate metabolism by systemic inhibition of Akt protein kinase, which is a central regulator of glucose uptake. However, Drosophila grown with predators survived better under direct spider predation in the adult phase. Administration of metformin and 5-hydroxytryptophan (5-HTP), a precursor of the neurotransmitter serotonin, reversed these effects. Our results demonstrate a direct link between predator stress and metabolic impairment, suggesting that a diabetes-like biochemical phenotype may be adaptive in terms of survival and reproductive success. We provide a novel animal model to explore the mechanisms responsible for the onset of these metabolic disorders, which are highly prevalent in human populations.


Assuntos
Diabetes Mellitus , Doenças Metabólicas , Animais , Humanos , Drosophila , Drosophila melanogaster , Comportamento Predatório/fisiologia , Cadeia Alimentar
2.
PLoS Genet ; 15(10): e1008410, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31584940

RESUMO

Mitochondria have been increasingly recognized as a central regulatory nexus for multiple metabolic pathways, in addition to ATP production via oxidative phosphorylation (OXPHOS). Here we show that inducing mitochondrial DNA (mtDNA) stress in Drosophila using a mitochondrially-targeted Type I restriction endonuclease (mtEcoBI) results in unexpected metabolic reprogramming in adult flies, distinct from effects on OXPHOS. Carbohydrate utilization was repressed, with catabolism shifted towards lipid oxidation, accompanied by elevated serine synthesis. Cleavage and translocation, the two modes of mtEcoBI action, repressed carbohydrate rmetabolism via two different mechanisms. DNA cleavage activity induced a type II diabetes-like phenotype involving deactivation of Akt kinase and inhibition of pyruvate dehydrogenase, whilst translocation decreased post-translational protein acetylation by cytonuclear depletion of acetyl-CoA (AcCoA). The associated decrease in the concentrations of ketogenic amino acids also produced downstream effects on physiology and behavior, attributable to decreased neurotransmitter levels. We thus provide evidence for novel signaling pathways connecting mtDNA to metabolism, distinct from its role in supporting OXPHOS.


Assuntos
Reprogramação Celular/genética , DNA Mitocondrial/genética , Diabetes Mellitus Tipo 2/genética , Mitocôndrias/genética , Trifosfato de Adenosina/genética , Animais , Metabolismo dos Carboidratos/genética , Carboidratos/genética , Enzimas de Restrição do DNA/genética , Diabetes Mellitus Tipo 2/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Humanos , Redes e Vias Metabólicas/genética , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Estresse Oxidativo/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...