Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Zoolog Sci ; 41(2): 230-243, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38587918

RESUMO

The insulin/insulin-like growth factor-like signaling (IIS) pathway is highly conserved across metazoans and regulates numerous physiological functions, including development, metabolism, fecundity, and lifespan. The insulin receptor (InR), a crucial membrane receptor in the IIS pathway, is known to be ubiquitously expressed in various tissues, albeit at generally low levels, and its subcellular localization remains incompletely characterized. In this study, we employed CRISPR-mediated mutagenesis in the fruit fly Drosophila to create knock-in alleles of InR tagged with fluorescent proteins (InR::mCherry or InR::EYFP). By inserting the coding sequence of the fluorescent proteins mCherry or EYFP near the end of the coding sequence of the endogenous InR gene, we could trace the natural InR protein through their fluorescence. As an example, we investigated epithelial cells of the male accessory gland (AG), an internal reproductive organ, and identified two distinct patterns of InR::mCherry localization. In young AG, InR::mCherry accumulated on the basal plasma membrane between cells, whereas in mature AG, it exhibited intracellular localization as multiple puncta, indicating endocytic recycling of InR during cell growth. In the AG senescence accelerated by the mutation of Diuretic hormone 31 (Dh31), the presence of InR::mCherry puncta was more pronounced compared to the wild type. These findings raise expectations for the utility of the newly created InR::mCherry/EYFP alleles for studying the precise expression levels and subcellular localization of InR. Furthermore, this fluorescently tagged allele approach can be extended to investigate other membrane receptors with low abundance, facilitating the direct examination of their true expression and localization.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Masculino , Animais , Drosophila melanogaster/fisiologia , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Alelos , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila
2.
Arch Phys Med Rehabil ; 105(2): 343-351, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37683907

RESUMO

OBJECTIVE: To investigate the characteristics and symptoms of patients with hip osteoarthritis that are associated with spatiotemporal gait parameters, including their variability and asymmetry. DESIGN: A retrospective, cross-sectional study. SETTING: University hospital. PARTICIPANTS: The study analyzed the gait analysis data of 155 patients (N=155) with hip osteoarthritis who were admitted to a university hospital for total hip replacement and were able to walk on a treadmill without a handrail. INTERVENTIONS: Not applicable. MAIN OUTCOME MEASURES: The dependent variables were gait parameters during treadmill walking. These included gait speed, stride length, cadence, coefficient of variation of stride length and stride time, swing time symmetry index, and step symmetry index. Single and multiple regression analyses were conducted using independent variables of the characteristics and symptoms of the patients, including age, sex, height, pain, leg-length discrepancy, and muscle strength of the affected and normal sides measured with a hand-held dynamometer (iliopsoas, gluteus medius, and quadriceps). RESULTS: In the analysis, gait speed and stride were the dependent variables, whereas age, height, and muscle strength on the affected side were the significant independent variables (P<.05). Additionally, pain demonstrated a marginal association with gait speed (P=.053). Only the leg-length discrepancy correlated with cadence. When the coefficient of variation of the stride length was the dependent variable, age and muscle strength on the affected side were significant. For the swing time symmetry index, only the muscle strength on the affected side was significant. Furthermore, the step symmetry index only correlated with leg-length discrepancy. The muscle strength on the affected side was the only significant independent variable for the coefficient of variation of the stride time. CONCLUSIONS: The results revealed that each of the frequent clinical symptoms of hip osteoarthritis, such as pain, muscle weakness, and leg-length discrepancy, can explain different aspects of gait performance.


Assuntos
Osteoartrite do Quadril , Humanos , Estudos Retrospectivos , Estudos Transversais , Marcha/fisiologia , Dor
3.
Int J Mol Sci ; 24(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37445840

RESUMO

The extracellular ubiquitin-proteasome system is involved in sperm binding to and/or penetration of the vitelline coat (VC), a proteinaceous egg coat, during fertilization of the ascidian (Urochordata) Halocynthia roretzi. It is also known that the sperm receptor on the VC, HrVC70, is ubiquitinated and degraded by the sperm proteasome during the sperm penetration of the VC and that a 700-kDa ubiquitin-conjugating enzyme complex is released upon sperm activation on the VC, which is designated the "sperm reaction". However, the de novo function of ubiquitin-activating enzyme (UBA/E1) during fertilization is poorly understood. Here, we show that PYR-41, a UBA inhibitor, strongly inhibited the fertilization of H. roretzi. cDNA cloning of UBA1 and UBA6 from H. roretzi gonads was carried out, and their 3D protein structures were predicted to be very similar to those of human UBA1 and UBA6, respectively, based on AlphaFold2. These two genes were transcribed in the ovary and testis and other organs, among which the expression of both was highest in the ovary. Immunocytochemistry showed that these enzymes are localized on the sperm head around a mitochondrial region and the follicle cells surrounding the VC. These results led us to propose that HrUBA1, HrUBA6, or both in the sperm head mitochondrial region and follicle cells may be involved in the ubiquitination of HrVC70, which is responsible for the fertilization of H. roretzi.


Assuntos
Fertilização , Urocordados , Animais , Feminino , Masculino , Humanos , Fertilização/fisiologia , Enzimas Ativadoras de Ubiquitina/genética , Enzimas Ativadoras de Ubiquitina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Urocordados/genética , Urocordados/metabolismo , Sêmen/metabolismo , Espermatozoides/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo
4.
Cell Rep ; 42(8): 112850, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37481721

RESUMO

The BRCA1-interacting protein Obg-like ATPase 1 (OLA1) functions in centriole duplication. In this study, we show the role of the mitotic kinase Aurora A in the reduction of centrosomal OLA1. Aurora A binds to and polyubiquitinates OLA1, targeting it for proteasomal degradation. NIMA-related kinase 2 (NEK2) phosphorylates the T124 residue of OLA1, increases binding of OLA1 to Aurora A and OLA1 polyubiquitination by Aurora A, and reduces centrosomal OLA1 in G2 phase. The kinase activity of Aurora A suppresses OLA1 polyubiquitination. The decrease in centrosomal OLA1 caused by Aurora A-mediated polyubiquitination promotes the recruitment of pericentriolar material proteins in G2 phase. The E3 ligase activity of Aurora A is critical for centrosome amplification induced by its overexpression. The results suggest a dual function of Aurora A as an E3 ubiquitin ligase and a kinase in the regulation of centrosomal OLA1, which is essential for proper centrosome maturation in G2 phase.


Assuntos
Aurora Quinase A , Centrossomo , Centrossomo/metabolismo , Fosforilação , Aurora Quinase A/metabolismo , Ciclo Celular , Fase G2
5.
Cancer Sci ; 113(12): 4230-4243, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36082621

RESUMO

Breast cancer gene 1 (BRCA1) plays roles in DNA repair and centrosome regulation and is involved in DNA damage-induced centrosome amplification (DDICA). Here, the centrosomal localization of BRCA1 and the kinases involved in centrosome duplication were analyzed in each cell cycle phase after treatment with DNA crosslinker cisplatin (CDDP). CDDP treatment increased the centrosomal localization of BRCA1 in early S-G2 phase. BRCA1 contributed to the increased centrosomal localization of Aurora A in S phase and that of phosphorylated Polo-like kinase 1 (PLK1) in late S phase after CDDP treatment, resulting in centriole disengagement and overduplication. The increased centrosomal localization of BRCA1 and Aurora A induced by CDDP treatment involved the nuclear export of BRCA1 and BRCA1 phosphorylation by ataxia telangiectasia mutated (ATM). Patient-derived variants and mutations at phosphorylated residues of BRCA1 suppressed the interaction between BRCA1 and Aurora A, as well as the CDDP-induced increase in the centrosomal localization of BRCA1 and Aurora A. These results suggest that CDDP induces the phosphorylation of BRCA1 by ATM in the nucleus and its transport to the cytoplasm, thereby promoting the centrosomal localization Aurora A, which phosphorylates PLK1. The function of BRCA1 in the translocation of the DNA damage signal from the nucleus to the centrosome to induce centrosome amplification after CDDP treatment might support its role as a tumor suppressor.


Assuntos
Aurora Quinase A , Proteína BRCA1 , Centrossomo , Dano ao DNA , Humanos , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Centrossomo/metabolismo , Fase G2 , Fosforilação , Aurora Quinase A/metabolismo
6.
Genes (Basel) ; 11(8)2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32722046

RESUMO

Breast cancer gene 1 (BRCA1)-associated RING domain protein 1 (BARD1) forms a heterodimer with BRCA1, a tumor suppressor associated with hereditary breast and ovarian cancer. BRCA1/BARD1 functions in multiple cellular processes including DNA repair and centrosome regulation. Centrosomes are the major microtubule-organizing centers in animal cells and are critical for the formation of a bipolar mitotic spindle. BRCA1 and BARD1 localize to the centrosome during the cell cycle, and the BRCA1/BARD1 dimer ubiquitinates centrosomal proteins to regulate centrosome function. We identified Obg-like ATPase 1 (OLA1) and receptor for activated C kinase (RACK1) as BRCA1/BARD1-interating proteins that bind to BARD1 and BRCA1 and localize the centrosomes during the cell cycle. Cancer-derived variants of BRCA1, BARD1, OLA1, and RACK1 failed to interact, and aberrant expression of these proteins caused centrosome amplification due to centriole overduplication only in mammary tissue-derived cells. In S-G2 phase, the number of centrioles was higher in mammary tissue-derived cells than in cells from other tissues, suggesting their involvement in tissue-specific carcinogenesis by BRCA1 and BARD1 germline mutations. We described the function of BARD1 in centrosome regulation in cooperation with BRCA1/OLA1/RACK1, as well as the effect of their dysfunction on carcinogenesis.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteína BRCA1/metabolismo , Centrossomo/fisiologia , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Neoplasias/metabolismo , Receptores de Quinase C Ativada/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Adenosina Trifosfatases/genética , Proteína BRCA1/genética , Proteínas de Ligação ao GTP/genética , Humanos , Proteínas de Neoplasias/genética , Receptores de Quinase C Ativada/genética , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/genética
7.
Development ; 145(23)2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30446626

RESUMO

In mouse embryos, primordial germ cells (PGCs) are fate-determined from epiblast cells. Signaling pathways involved in PGC formation have been identified, but their epigenetic mechanisms remain poorly understood. Here, we show that the histone methyltransferase SETDB1 is an epigenetic regulator of PGC fate determination. Setdb1-deficient embryos exhibit drastic reduction of nascent PGCs. Dppa2, Otx2 and Utf1 are de-repressed whereas mesoderm development-related genes, including BMP4 signaling-related genes, are downregulated by Setdb1 knockdown during PGC-like cell (PGCLC) induction. In addition, binding of SETDB1 is observed at the flanking regions of Dppa2, Otx2 and Utf1 in cell aggregates containing PGCLCs, and trimethylation of lysine 9 of histone H3 is reduced by Setdb1 knockdown at those regions. Furthermore, DPPA2, OTX2 and UTF1 binding is increased in genes encoding BMP4 signaling-related proteins, including SMAD1. Finally, overexpression of Dppa2, Otx2 and Utf1 in cell aggregates containing PGCLCs results in the repression of BMP4 signaling-related genes and PGC determinant genes. We propose that the localization of SETDB1 to Dppa2, Otx2 and Utf1, and subsequent repression of their expression, are crucial for PGC determination by ensuring BMP4 signaling.


Assuntos
Proteína Morfogenética Óssea 4/metabolismo , Linhagem da Célula , Células Germinativas/citologia , Células Germinativas/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Transdução de Sinais , Animais , Embrião de Mamíferos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Histona-Lisina N-Metiltransferase/deficiência , Histona-Lisina N-Metiltransferase/genética , Mesoderma/embriologia , Mesoderma/metabolismo , Camundongos , Fatores de Transcrição/metabolismo , Regulação para Cima/genética
8.
PLoS One ; 13(10): e0205004, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30286177

RESUMO

Primordial germ cells (PGCs) are precursors of eggs and sperm. Although PGCs are unipotent cells in vivo, they are reprogrammed into pluripotent stem cells (PSCs), also known as embryonic germ cells (EGCs), in the presence of leukemia inhibitory factor and basic fibroblast growth factor (bFGF) in vitro. However, the molecular mechanisms responsible for their reprogramming are not fully understood. Here we show identification of transcription factors that mediate PGC reprogramming. We selected genes encoding transcription factors or epigenetic regulatory factors whose expression was significantly different between PGCs and PSCs with in silico analysis and RT-qPCR. Among the candidate genes, over-expression (OE) of Bcl3 or Klf9 significantly enhanced PGC reprogramming. Notably, EGC formation was stimulated by Klf9-OE even without bFGF. G-protein-coupled receptor signaling-related pathways, which are involved in PGC reprogramming, were enriched among genes down-regulated by Klf9-OE, and forskolin which activate adenylate cyclase, rescued repressed EGC formation by knock-down of Klf9, suggesting a molecular linkage between KLF9 and such signaling.


Assuntos
Reprogramação Celular , Células Germinativas Embrionárias/citologia , Fatores de Transcrição Kruppel-Like/metabolismo , Óvulo/citologia , Proteínas Proto-Oncogênicas/metabolismo , Espermatozoides/citologia , Fatores de Transcrição/metabolismo , Animais , Proteína 3 do Linfoma de Células B , AMP Cíclico/metabolismo , Células Germinativas Embrionárias/metabolismo , Feminino , Perfilação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL
9.
Cell Rep ; 24(10): 2682-2693.e6, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30184502

RESUMO

Primordial germ cells (PGCs) are fate determined from pluripotent epiblasts. Signaling pathways and transcriptional regulators involved in PGC formation have been identified, but detailed molecular mechanisms of PGC fate determination remains poorly understood. Using RNAi screening, we identified histone deacetylase 3 (HDAC3) as a regulator of PGC formation. Hdac3 deficiency resulted in decreased nascent PGCs in vitro and in vivo, and somatic developmental genes were de-repressed by Hdac3 knockdown during PGC induction. We also demonstrated BLIMP1-dependent enrichment of HDAC3 and deacetylation of H3 and H4 histones in the somatic developmental genes in epiblast-like cells. In addition, the HDAC3/BLIMP1-targeted somatic gene products were enriched in PGC determinant genes; overexpression of these gene products in PGC-like cells in culture resulted in repression of PGC determinant genes. We propose that selective recruitment of HDAC3 to somatic genes by BLIMP1 and subsequent repression of these somatic genes are crucial for PGC fate determination.


Assuntos
Células Germinativas/metabolismo , Histona Desacetilases/metabolismo , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Acetilação , Animais , Regulação da Expressão Gênica no Desenvolvimento , Histona Desacetilases/genética , Histonas/metabolismo , Camundongos , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Biol Open ; 7(1)2018 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-29378702

RESUMO

Spontaneous testicular teratoma develops from primordial germ cells (PGCs) in embryos; however, the molecular mechanisms underlying teratoma formation are not fully understood. Mutation of the dead-end 1 (Dnd1) gene, which encodes an RNA-binding protein, drastically enhances teratoma formation in the 129/Sv mouse strain. To elucidate the mechanism of Dnd1 mutation-induced teratoma formation, we focused on histone H3 lysine 27 (H3K27) trimethylation (me3), and found that the levels of H3K27me3 and its responsible methyltransferase, enhancer of zeste homolog 2 (Ezh2), were decreased in the teratoma-forming cells of Dnd1 mutant embryos. We also showed that Dnd1 suppressed miR-26a-mediated inhibition of Ezh2 expression, and that Dnd1 deficiency resulted in decreased H3K27me3 of a cell-cycle regulator gene, Ccnd1 In addition, Ezh2 expression or Ccnd1 deficiency repressed the reprogramming of PGCs into pluripotent stem cells, which mimicked the conversion of embryonic germ cells into teratoma-forming cells. These results revealed an epigenetic molecular linkage between Dnd1 and the suppression of testicular teratoma formation.

11.
Proc Natl Acad Sci U S A ; 114(31): 8289-8294, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28716939

RESUMO

Primordial germ cells (PGCs), undifferentiated embryonic germ cells, are the only cells that have the ability to become gametes and to reacquire totipotency upon fertilization. It is generally understood that the development of PGCs proceeds through the expression of germ cell-specific transcription factors and characteristic epigenomic changes. However, little is known about the properties of PGCs at the metabolite and protein levels, which are directly responsible for the control of cell function. Here, we report the distinct energy metabolism of PGCs compared with that of embryonic stem cells. Specifically, we observed remarkably enhanced oxidative phosphorylation (OXPHOS) and decreased glycolysis in embryonic day 13.5 (E13.5) PGCs, a pattern that was gradually established during PGC differentiation. We also demonstrate that glycolysis and OXPHOS are important for the control of PGC reprogramming and specification of pluripotent stem cells (PSCs) into PGCs in culture. Our findings about the unique metabolic property of PGCs provide insights into our understanding of the importance of distinct facets of energy metabolism for switching PGC and PSC status.


Assuntos
Células Germinativas Embrionárias/metabolismo , Células-Tronco Embrionárias/metabolismo , Metabolismo Energético/fisiologia , Glicólise/fisiologia , Fosforilação Oxidativa , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Células Germinativas Embrionárias/citologia , Células-Tronco Embrionárias/citologia , Regulação da Expressão Gênica/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Proteoma/análise
12.
Proteomics ; 15(23-24): 4064-79, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26223815

RESUMO

Sperm proteins mediating sperm-egg interaction should be exhibited on the sperm surface, or exposed or released when sperm approach an egg. In ascidians (protochordates), sperm undergo a sperm reaction, characterized by enhanced sperm motility and mitochondrial swelling and shedding on contact with the vitelline coat (VC) or by treatment with Ca(2+) ionophore. Here, proteomic analysis was conducted on sperm exudates and sperm surface proteins using ionomycin-induced sperm reaction and cell-impermeable labeling in Ciona intestinalis type A (C. robusta). In the exudate from sperm treated with ionomycin, membrane proteins including a possible VC receptor CiUrabin were abundant, indicating the release of membranous compartments during sperm reaction. Among the surface proteins XP_009859314.1 (uncharacterized protein exhibiting homology to HrTTSP-1) was most abundant before the sperm reaction, but XP_004227079.1 (unknown Ig superfamily protein) appears to be most abundantly exposed by the sperm reaction. Moreover, proteins containing a notable set of domains, astacin-like metalloprotease domain and thrombospondin type 1 repeat(s), were found in this fraction. Possible roles in fertilization as well as localizations and behaviors of these proteins are discussed.


Assuntos
Ciona intestinalis/metabolismo , Ionomicina/farmacologia , Proteômica , Espermatozoides/metabolismo , Animais , Ionóforos de Cálcio/farmacologia , Ciona intestinalis/efeitos dos fármacos , Masculino , Complexo de Endopeptidases do Proteassoma/metabolismo , Espermatozoides/efeitos dos fármacos , Ubiquitina/metabolismo
13.
Mol Reprod Dev ; 80(10): 840-8, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23857746

RESUMO

Ascidians are hermaphrodites, although several ascidian species show self-sterility because of the occurrence of a self/nonself-recognition system called the self-incompatibility system. We previously reported that two pairs of sperm polycystin 1-like receptors, s-Themis-A and s-Themis-B, and egg fibrinogen-like ligands, v-Themis-A and v-Themis-B, are responsible for self-incompatibility in the ascidian Ciona intestinalis. Our previous results showed that v-Themis-A and v-Themis-B were hardly extracted from the vitelline coat (VC) by acid treatment, which is not in accordance with a report that an acid-extractable VC factor has the ability to distinguish self- from nonself-sperm. These results led us to explore a novel factor from acid-extractable VC proteins that could be involved in self-incompatibility. Here, we report cDNA cloning, expression, and localization of Ci-v-Themis-like, a major acid-extractable VC protein. This protein has a fibrinogen-like domain, as do v-Themis-A and v-Themis-B, but it showed no polymorphisms. Phylogenic analysis suggested that Ci-v-Themis-like is an ancestral protein of v-Themis-A and v-Themis-B. Whole mount in situ hybridization revealed that Ci-v-Themis-like mRNA is expressed in the ovary and testis. Western blotting and immunocytochemistry showed the occurrence of Ci-v-Themis-like in developing oocytes and on the VC of mature eggs. Yeast two-hybrid screenings using testis and ovary libraries revealed candidate interacting proteins; among these candidates, we succeeded in identifying several testis-specific proteins, including sperm proteases and coiled-coil-domain-containing proteins. The results suggest that Ci-v-Themis-like and its binding partners are involved in sperm binding to the VC prior to the allorecognition process during C. intestinalis fertilization.


Assuntos
Ciona intestinalis/genética , Proteínas do Ovo/metabolismo , Autofertilização/fisiologia , Urocordados/genética , Vitelinas/genética , Animais , Ciona intestinalis/metabolismo , Proteínas do Ovo/biossíntese , Feminino , Infertilidade/genética , Infertilidade/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Ovário/metabolismo , Filogenia , Estrutura Terciária de Proteína/genética , Autofertilização/genética , Testículo/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Urocordados/metabolismo , Membrana Vitelina/metabolismo , Vitelinas/biossíntese , Vitelinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...