Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 23(10): 101586, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33083748

RESUMO

Nanostructured porous silicon materials have recently advanced as hosts for Li-metal plating. However, limitations involve detrimental silicon self-pulverization, Li-dendrites, and the ability to achieve wafer-level integration of non-composite, pure silicon anodes. compo. Herein, full cells featuring low-resistance, wafer-scale porous crystalline silicon (PCS) anodes are embedded with a nanoporous Li-plating and diffusion-regulating surface layer upon combined wafer surface cleaning (SC) and anodization. LL Lithiophilic surface formation is illustrated via correlation of surface groups and X-ray structure. Low-cost SC-PCS anodes require no composite formulation, and pre-lithiation enables sustainable Li-metal plating/stripping on the lithiophilic surface and in SC-PCS bulk nanostructure. Anodization time and C-rate determined competitive full cell performance: NMC811 | 4800 s SC-PCS: 195 mAh/g (99.9% coulombic efficiency [C.E.], C/3, 50 cycles), 165 mAh/g, 587 Wh/kg (97.1% C.E., C/3 and C/2 rate, 350 cycles), 24 Ω∗cm2 SC-PCS-resistivity (900 cycles); 160 µm LCO | 500 s SC-PCS: 102 mAh/g (94.1% C.E., 1C, 350 cycles).

2.
Nano Lett ; 15(1): 34-8, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25506710

RESUMO

We observe the growth of crystalline SiC nanoparticles on Si(001) at 900 °C using in situ electron microscopy. Following nucleation and growth of the SiC, there is a massive migration of Si, forming a crystalline Si mound underneath each nanoparticle that lifts it 4-5 nm above the initial growth surface. The volume of the Si mounds is roughly five to seven times the volume of the SiC nanoparticles. We propose that relaxation of strain drives the mound formation. This new mechanism for relieving interfacial strain, which involves a dramatic restructuring of the substrate, is in striking contrast to the familiar scenario in which only the deposited material restructures to relieve strain.

3.
Rev Sci Instrum ; 85(8): 084301, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25173286

RESUMO

We introduce a new experimental technique for manipulating a segment of a charged macromolecule inside a transient nanogap between two fluidic reservoirs. This technique uses an FPGA-driven nanopositioner to control the coupling of a nanopipette with the liquid surface of a fluidic cell. We present results on creating a transient nanogap, triggered by a translocation of double-stranded DNA between a nanopipette and a fluidic cell, and measure the probability to find the molecule near the tip of the nanopipette after closing the gap. The developed platform will enable testing of our recent theoretical predictions for the behavior of charged macromolecule in a nanogap between two fluidic reservoirs.


Assuntos
DNA/química , Técnicas Analíticas Microfluídicas , Nanotecnologia , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Nanotecnologia/instrumentação , Nanotecnologia/métodos
4.
Nat Commun ; 5: 4836, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-25208642

RESUMO

There are numerous studies on the growth of planar films on sp(2)-bonded two-dimensional (2D) layered materials. However, it has been challenging to grow single-crystalline films on 2D materials due to the extremely low surface energy. Recently, buffer-assisted growth of crystalline films on 2D layered materials has been introduced, but the crystalline quality is not comparable with the films grown on sp(3)-bonded three-dimensional materials. Here we demonstrate direct van der Waals epitaxy of high-quality single-crystalline GaN films on epitaxial graphene with low defectivity and surface roughness comparable with that grown on conventional SiC or sapphire substrates. The GaN film is released and transferred onto arbitrary substrates. The post-released graphene/SiC substrate is reused for multiple growth and transfer cycles of GaN films. We demonstrate fully functional blue light-emitting diodes (LEDs) by growing LED stacks on reused graphene/SiC substrates followed by transfer onto plastic tapes.

5.
ACS Nano ; 7(9): 8303-8, 2013 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-24006886

RESUMO

So far, realization of reproducible n-type carbon nanotube (CNT) transistors suitable for integrated digital applications has been a difficult task. In this work, hundreds of n-type CNT transistors from three different low work function metals-erbium, lanthanum, and yttrium-are studied and benchmarked against p-type devices with palladium contacts. The crucial role of metal type and deposition conditions is elucidated with respect to overall yield and performance of the n-type devices. It is found that high oxidation rates and sensitivity to deposition conditions are the major causes for the lower yield and large variation in performance of n-type CNT devices with low work function metal contacts. Considerable improvement in device yield is attained using erbium contacts evaporated at high deposition rates. Furthermore, the air-stability of our n-type transistors is studied in light of the extreme sensitivity of these metals to oxidation.

6.
ACS Nano ; 6(8): 6786-92, 2012 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-22780305

RESUMO

A process for fabricating dense graphene nanoribbon arrays using self-assembled patterns of block copolymers on graphene grown epitaxially on SiC on the wafer scale has been developed. Etching masks comprising long and straight nanoribbon array structures with linewidths as narrow as 10 nm were fabricated, and the patterns were transferred to graphene. Our process combines both top-down and self-assembly steps to fabricate long graphene nanoribbon arrays with low defect counts. These are the narrowest nanoribbon arrays of epitaxial graphene on SiC fabricated to date.


Assuntos
Compostos Inorgânicos de Carbono/química , Cristalização/métodos , Grafite/química , Impressão Molecular/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Fotografação/métodos , Compostos de Silício/química , Compostos Inorgânicos de Carbono/efeitos da radiação , Grafite/efeitos da radiação , Substâncias Macromoleculares/química , Substâncias Macromoleculares/efeitos da radiação , Teste de Materiais , Conformação Molecular/efeitos da radiação , Nanoestruturas/efeitos da radiação , Tamanho da Partícula , Compostos de Silício/efeitos da radiação , Propriedades de Superfície/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...