Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 24(10): 6011-6025, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35199803

RESUMO

Despite the array of applications for cationic polythiophenes (CPTs), there is still a need for structure-function guidelines and mechanistic understanding of their solution- and solid-state properties. This work presents a solution- and solid-state investigation of the effect of O-alkylation proximity on the hydrogen bonding (H-bonding) capabilities of alkoxy-CPTs, based on comparing an imidazolium alkoxy CPT with strong cation-pi, pi+ and positive charge-assisted hydrogen bonding (+CAHB) capabilities (PIMa), with two isothiouronium alkoxy CPTs with two-point +CAHB capabilities (PT1 & PT2), which have short and long alkoxy side chains, respectively. Our results show that a closer proximity of O-alkylation strengthens the +CAHB capabilities of PT1: in aqueous solutions, PT2 aggregates have a stronger interaction with cationic EPR spin probes than aggregates of PIMa and PT1, which in turn show a similar extent of repulsion towards the cationic spin probes. In solid-state, atomic force microscopy (AFM) shows that PIMa generates dendritic structures onto mica, with features of diffusion-limited aggregation (DLA), indicating strong interactions with the anionic substrate due to a high configurational entropy during spreading, regardless of being drop-casted from water or 1,4-dioxane-water (W-DI), despite the latter disturbing H-bonding due to selective solvation. PT1 is also capable of generating dendritic structures resembling ballistic aggregation (BA). However, this occurs only when casting from water, since W-DI generates island-like aggregates resembling attachment limited aggregation (ALA), which is the morphology generated by PT2 regardless of the solvent. Finally, spin-coated films of PIMa and PT1 show similar dispersivity of the surface free energy (SFE), which in turn is larger than that in PT2 films, which are also more affected when casted from W-DI, presenting much larger decreases of dispersivity. These results constitute a novel empirical structure-function guideline that could be useful for optimal design and/or processing of alkoxy CPTs. For example, dendritic patterns have recently gained attention since the colloidal droplet drying is related to engineering applications including inkjet printing, biosensing, and functional material design, while the SFE is relevant for opto- and bio-electronic applications of conjugated polyelectrolytes (CPEs). This information could also be useful when analyzing previous results obtained from alkoxy CPTs with different side chain lengths.

2.
Langmuir ; 36(9): 2278-2290, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32027512

RESUMO

Cationic imidazolium-functionalized polythiophenes with single- or double-methylation of the imidazolium ring were used to study the impact of imidazolium-methylation on (i) the solution concentration-driven aggregation in the presence of paramagnetic probes with different ionic and hydrophobic constituents and (ii) their surface free energy (SFE) as spin-coated films deposited on plasma-activated glass. Electron paramagnetic resonance spectroscopy shows that the differences in film structuration between the polymers with different methylations originate from the early stages of aggregation. In the solid state, higher degree of imidazolium-methylation generates smaller values of total SFE, γS, (by around 2 mN/m), which could be relevant in optoelectronic applications. Methylation also causes a decrease in the polar contribution of γS (γSp), suggesting that methylation decreases the polar nature of the imidazolium ring, probably due to the blocking of its H-bonding capabilities. The values of γS obtained in the present work are similar to the values obtained for doped films of neutral conjugated polymers, such as polyaniline, poly(3-hexylthiophene), and polypyrrole. However, imidazolium-polythiophenes generate films with a larger predominance of the dispersive component of γS (γSd), probably due to the motion restriction in the ionic functionalities in a conjugated polyelectrolyte, in comparison to regular dopants. The presence of 1,4-dioxane increases γSp, especially, in the polymer with larger imidazolium-methylation (and therefore unable to interact through H-bonding), probably by a decrease of the imidazolium-glass interactions. Singly-methylated imidazolium polythiophenes have been applied as electrode selective ("buffer") interlayers in conventional and inverted organic solar cells, improving their performance. However, clear structure-function guidelines are still needed for designing high-performance polythiophene-based interlayer materials. Therefore, the information reported in this work could be useful for such applications.

3.
ACS Macro Lett ; 8(4): 473-478, 2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-31289694

RESUMO

The synthesis of functional poly(2-alkyl-2-oxazoline) (PAOx) copolymers with complex nanoarchitectures using a graft-through ring-opening metathesis polymerization (ROMP) approach is described. First, well-defined norbornene-terminated poly(2-ethyl-2-oxazoline) (PEtOx) macromonomers (MM) were prepared by cationic ringopening polymerization. ROMP of these MMs produced bottlebrush copolymers with PEtOx side chains. In addition, PEtOx-based branched MMs bearing a terminal alkyne group were prepared and conjugated to an azide-containing bis-spirocyclohexyl nitroxide via Cu-catalyzed azide-alkyne cycloaddition (CuAAC). ROMP of this branched MM, followed by in situ cross-linking, provided PEtOx-based brush-arm star polymers (BASPs) with nitroxide radicals localized at the core-shell interface. These PEtOx-based nitroxide-containing BASPs displayed relaxivity values on par with state-of-the-art polyethylene glycol (PEG)-based nitroxide materials, making them promising as organic radical contrast agents for metal-free magnetic resonance imaging (MRI).

4.
ACS Macro Lett ; 7(4): 472-476, 2018 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30271675

RESUMO

The polymerization of functional monomers provides direct access to functional polymers without need for postpolymerization modification; however, monomer synthesis can become a bottleneck of this approach. New methods that enable rapid installation of functionality into monomers for living polymerization are valuable. Here, we report the three-step convergent synthesis (two-step longest linear sequence) of a divalent exo-norbornene imide capable of efficient coupling with various nucleophiles and azides to produce diversely functionalized branched macromonomers optimized for ring-opening metathesis polymerization (ROMP). In addition, we describe an efficient iterative procedure for the synthesis of tri-and tetra-valent branched macromonomers. We demonstrate the use of these branched macromonomers for the synthesis of Janus bottlebrush block copolymers as well as for the generation of bottlebrush polymers with up to three conjugated small molecules per repeat unit. This work significantly expands the scalability and diversity of nanostructured macromolecules accessible via ROMP.

5.
Langmuir ; 34(32): 9424-9434, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30032619

RESUMO

Drug delivery is considered a mature scientific and technological platform for producing innovative medicines with nanosystems composed of intelligent bio-materials that carry active pharmaceutical ingredients forming advanced drug delivery nanosystems (aDDnSs). Shikonin and its enantiomer alkannin are natural products that have been extensively studied in vitro and in vivo for, among others, their antitumor activity, and various efforts have been made to prepare shikonin-loaded drug delivery systems. This study is focused on chimeric aDDnSs and specifically on liposomal formulations combining three lipids (egg-phosphatidylcholine; dipalmitoyl phosphatidylcholine; and distearoyl phosphatidylcholine) and a hyperbranched polymer (PFH-64-OH). Furthermore, PEGylated liposomal formulations of all samples were also prepared. Calorimetric techniques and electron paramagnetic resonance were used to explore and evaluate the interactions and stability of the liposomal formulations, showing that the presence of hyperbranched polymers promote the overall stability of the chimeric aDDnSs based on the drug release profile enhancement. Furthermore, results showed that polyethylene glycol enhances drug stabilization inside the liposomes, forming a stable and promising carrier for shikonin with improved characteristics.


Assuntos
Antineoplásicos/química , Portadores de Fármacos/química , Naftoquinonas/química , 1,2-Dipalmitoilfosfatidilcolina/química , Calorimetria/métodos , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Lipossomos/química , Tamanho da Partícula , Fosfatidilcolinas/química , Polietilenoglicóis/química , Eletricidade Estática
6.
J Inorg Biochem ; 177: 211-218, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29031179

RESUMO

A series of new organometallic carbosilane dendrimers functionalized with Copper(II) complex on the surface were synthesized and characterized as potential anticancer agents. These metallodendrimers were synthesized through the reaction of dendritic ligands containing N,N- and N,O- donor atoms able to act as chelating agents with CuCl2 as metallic ion precursor. The structural characterization of these complexes was addressed through the use of different analytical and spectroscopical techniques. Particularly, an electron paramagnetic resonance study was performed to corroborate the coordination properties of these dendritic ligands. A preliminary study was carried out to establish the cytotoxicity of the new synthesized compounds in human prostate (PC3) and human cervical (HeLa) cancer cell lines in order to evaluate their potential as anticancer agents and compare their activity with other copper or analogous ruthenium metallodendrimers.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Cobre/química , Dendrímeros/farmacologia , Silanos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Dendrímeros/síntese química , Dendrímeros/química , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Ligantes , Silanos/síntese química , Silanos/química
7.
ACS Cent Sci ; 3(7): 800-811, 2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28776023

RESUMO

Metal-free magnetic resonance imaging (MRI) agents could overcome the established toxicity associated with metal-based agents in some patient populations and enable new modes of functional MRI in vivo. Herein, we report nitroxide-functionalized brush-arm star polymer organic radical contrast agents (BASP-ORCAs) that overcome the low contrast and poor in vivo stability associated with nitroxide-based MRI contrast agents. As a consequence of their unique nanoarchitectures, BASP-ORCAs possess per-nitroxide transverse relaxivities up to ∼44-fold greater than common nitroxides, exceptional stability in highly reducing environments, and low toxicity. These features combine to provide for accumulation of a sufficient concentration of BASP-ORCA in murine subcutaneous tumors up to 20 h following systemic administration such that MRI contrast on par with metal-based agents is observed. BASP-ORCAs are, to our knowledge, the first nitroxide MRI contrast agents capable of tumor imaging over long time periods using clinical high-field 1H MRI techniques.

8.
J Phys Chem B ; 121(6): 1169-1175, 2017 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-28099013

RESUMO

Dynamic nuclear polarization is an emerging technique for sensitizing solid-state NMR experiments by transferring polarization from electrons to nuclei. Stable biradicals, the polarization source for the cross effect mechanism, are typically codissolved at millimolar concentrations with proteins of interest. Here we describe the high-affinity biradical tag TMP-T, created by covalently linking trimethoprim, a nanomolar affinity ligand of dihydrofolate reductase (DHFR), to the biradical polarizing agent TOTAPOL. With TMP-T bound to DHFR, large enhancements of the protein spectrum are observed, comparable to when TOTAPOL is codissolved with the protein. In contrast to TOTAPOL, the tight binding TMP-T can be added stoichiometrically at radical concentrations orders of magnitude lower than in previously described preparations. Benefits of the reduced radical concentration include reduced spectral bleaching, reduced chemical perturbation of the sample, and the ability to selectively enhance signals for the protein of interest.


Assuntos
Tetra-Hidrofolato Desidrogenase/química , Trimetoprima/química , Ligantes , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Tetra-Hidrofolato Desidrogenase/metabolismo
9.
Chemistry ; 22(9): 2987-99, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26875938

RESUMO

Anionic carbosilane dendrons decorated with sulfonate functions and one thiol moiety at the focal point have been used to synthesize water-soluble gold nanoparticles (AuNPs) through the direct reaction of dendrons, gold precursor, and reducing agent in water, and also through a place-exchange reaction. These nanoparticles have been characterized by NMR spectroscopy, TEM, thermogravimetric analysis, X-ray photoelectron spectroscopy (XPS), UV/Vis spectroscopy, elemental analysis, and zeta-potential measurements. The interacting ability of the anionic sulfonate functions was investigated by EPR spectroscopy with copper(II) as a probe. Different structures and conformations of the AuNPs modulate the availability of sulfonate and thiol groups for complexation by copper(II). Toxicity assays of AuNPs showed that those produced through direct reaction were less toxic than those obtained by ligand exchange. Inhibition of HIV-1 infection was higher in the case of dendronized AuNPs than in dendrons.


Assuntos
Ânions/química , Antivirais/síntese química , Antivirais/farmacologia , Dendrímeros/química , Ouro/química , HIV-1/química , Nanopartículas Metálicas/química , Silanos/química , Antivirais/química , Espectroscopia de Ressonância de Spin Eletrônica , Espectroscopia Fotoeletrônica , Espectrofotometria Ultravioleta
10.
ACS Appl Mater Interfaces ; 7(20): 10966-76, 2015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-25942541

RESUMO

The effect of the cross-linker on the shape and size of molecular imprinted polymer (MIP) beads prepared by precipitation polymerization has been evaluated using a chemometric approach. Molecularly imprinted microspheres for the selective recognition of fluoroquinolone antimicrobials were prepared in a one-step precipitation polymerization procedure using enrofloxacin (ENR) as the template molecule, methacrylic acid as functional monomer, 2-hydroxyethyl methacrylate as hydrophilic comonomer, and acetonitrile as the porogen. The type and amount of cross-linker, namely ethylene glycol dimethacrylate, divinylbenzene or trimethylolpropane trimethacrylate, to obtain monodispersed MIP spherical beads in the micrometer range was optimized using a simplex lattice design. Particle size and morphology were assessed by scanning electron microscopy, dynamic light scattering, and nitrogen adsorption measurements. Electron paramagnetic resonance spectroscopy in conjunction with a nitroxide as spin probe revealed information about the microviscosity and polarity of the binding sites in imprinted and nonimprinted polymer beads.


Assuntos
Anti-Infecciosos/química , Técnicas de Química Combinatória/métodos , Fluoroquinolonas/química , Microesferas , Impressão Molecular/métodos , Polímeros/química , Adsorção , Anti-Infecciosos/administração & dosagem , Misturas Complexas/química , Composição de Medicamentos/métodos , Desenho de Fármacos , Fluoroquinolonas/administração & dosagem , Teste de Materiais , Tamanho da Partícula
11.
Nat Commun ; 5: 5460, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25403521

RESUMO

Stimuli-responsive multimodality imaging agents have broad potential in medical diagnostics. Herein, we report the development of a new class of branched-bottlebrush polymer dual-modality organic radical contrast agents--ORCAFluors--for combined magnetic resonance and near-infrared fluorescence imaging in vivo. These nitroxide radical-based nanostructures have longitudinal and transverse relaxation times that are on par with commonly used heavy-metal-based magnetic resonance imaging (MRI) contrast agents. Furthermore, these materials display a unique compensatory redox response: fluorescence is partially quenched by surrounding nitroxides in the native state; exposure to ascorbate or ascorbate/glutathione leads to nitroxide reduction and a concomitant 2- to 3.5-fold increase in fluorescence emission. This behaviour enables correlation of MRI contrast, fluorescence intensity and spin concentration with tissues known to possess high concentrations of ascorbate in mice. Our in vitro and in vivo results, along with our modular synthetic approach, make ORCAFluors a promising new platform for multimodality molecular imaging.


Assuntos
Meios de Contraste/química , Imageamento por Ressonância Magnética/instrumentação , Imagem Molecular/instrumentação , Polímeros/química , Animais , Ácido Ascórbico/química , Meios de Contraste/síntese química , Feminino , Fluorescência , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Óxidos de Nitrogênio/química , Oxirredução , Polímeros/síntese química
12.
Colloids Surf B Biointerfaces ; 122: 231-240, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25048360

RESUMO

Two non-steroidal anti-inflammatory drugs (NSAIDs), sodium diclofenac (Na-DFC) and celecoxib (CLXB) were solubilized within cubic and lamellar mesophases as carriers for transdermal drug delivery. SD-NMR, SAXS, ATR-FTIR, and EPR measurements were performed to examine the systems' characteristics and the interactions between the drugs and their hosting mesophases. The amphiphilic drug Na-DFC was found to incorporate at the interfaces of the cubic and lamellar mesophases and thus to act as a cosurfactant and a "structure stabilizer". It increased the order degree and the interactions between the GMO molecules and led the systems toward denser packing. CLXB exhibits an opposite effect on the mesophases. Its solubilization within both systems is accompanied with significant channel swelling and decrease in the order degree. The hydrophobic, rigid and bulky CLXB behaves as a "structure breaker", incorporated between the GMO tails, disturbing the mesophase packing and enhancing the repulsion at the tails region, limiting their close binding. Release experiments from Franz cells revealed that Na-DFC release is dependent on the quantity of water within the hosting mesophase as the water-rich formulation exhibits 1.5-fold enhancement in the release of the drug, compared to the lamellar phase. In contrast, CLXB release was not influenced by the water quantity, hinting that the release mechanisms of the drugs are different while Na-DFC diffuses from the water channels to the external phase, CLXB diffusion occurs through the continuous lipophilic region. The difference in the solubilization sites and interactions of each drug with the mesophases affect their release profiles and determine the preferred formulations for each drug's delivery vehicle.


Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Portadores de Fármacos , Espectroscopia de Ressonância de Spin Eletrônica , Espectroscopia de Ressonância Magnética , Espalhamento a Baixo Ângulo , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
13.
J Phys Chem B ; 118(23): 6277-87, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24798650

RESUMO

Sodium diclofenac (Na-DFC) and celecoxib (CLXB) are common nonsteroidal anti-inflammatory (NSAID) drugs which suffer from poor bioavailability and severe side effects when consumed orally, and their transdermal delivery might present important advantages. In this study, the drugs were solubilized in cubic and lamellar mesophases as transdermal delivery vehicles, and a cell-penetrating peptide, HIV-TAT (TAT), was examined as a skin penetration enhancer. SD-NMR, ATR-FTIR, and EPR measurements revealed that, in the cubic mesophase (which is rich in water content), TAT populates the aqueous cores and binds water, while in the dense lamellar system (with the lower water content) TAT is bound also to the glycerol monooleate (GMO) and increases the microviscosity and the order degree. TAT secondary structure in the cubic system was found to be a random coil while once it was embedded in the closely packed lamellar system it transforms to a more ordered compact state of ß-turns arranged around the GMO headgroups. TAT remarkably increased the diffusion of Na-DFC and CLXB from the cubic systems by 6- and 9-fold enhancement, respectively. TAT effect on drug diffusion from the lamellar systems was limited to an increase of 1.3- and 1.7-fold, respectively. The dense packing and strong binding in the lamellar phase led to slow diffusion rates and slower drug release in controlled pattern. These effects of the chemical composition and vehicle geometry on drug diffusion are demonstrated with the impacts of TAT which can be specifically utilized for controlling skin delivery of drugs as required.


Assuntos
Administração Cutânea , Anti-Inflamatórios não Esteroides/administração & dosagem , Portadores de Fármacos/química , Cristais Líquidos/química , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Animais , Anti-Inflamatórios não Esteroides/farmacocinética , Celecoxib/administração & dosagem , Celecoxib/farmacocinética , Diclofenaco/administração & dosagem , Diclofenaco/farmacocinética , Difusão , Digoxina/análogos & derivados , Glicerídeos/química , Permeabilidade/efeitos dos fármacos , Estrutura Secundária de Proteína , Pele/efeitos dos fármacos , Pele/metabolismo , Sus scrofa , Viscosidade , Água/química , Produtos do Gene tat do Vírus da Imunodeficiência Humana/química
14.
Dalton Trans ; 42(16): 5874-89, 2013 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-23462972

RESUMO

Herein we describe the synthesis and characterization of new sulfonated and carboxylated poly(propyleneimino) (PPI) dendrimers with the ethylenediamino (EDA) core, at generations 1, 2 and 3. By means of UV-Vis and EPR spectroscopy, using Cu(2+) as a probe, we concluded that these dendrimers show a specific pattern in the coordination of metal ions. In agreement with the UV-Vis studies, EPR spectra of carboxylated compounds are constituted by 3 different signals which appear and then disappear with increasing copper concentration, corresponding to the saturation of different copper complexation sites. At the lowest copper concentration up to a 1:1 molar ratio between Cu(II) and the dendrimer, the spectrum is characteristic of a CuN2O2 coordination at the core of the dendrimer. The spectrum appearing at higher Cu(II) concentrations indicates a peripheral location of the ions coordinating one nitrogen and 3 oxygen atoms in a square planar geometry in restricted mobility conditions. For the highest concentrations tested, copper ions are confined at the external dendrimer surface with CuO4 coordination. For sulfonate systems, the EPR results are in line with a weaker interaction of Cu(II) with the nitrogen sites and a stronger interaction with the oxygen (SO3(-)) groups with respect to the interactions measured by EPR for carboxylate systems.


Assuntos
Complexos de Coordenação/síntese química , Dendrímeros/síntese química , Polipropilenos/química , Ânions/química , Ácidos Carboxílicos/química , Complexos de Coordenação/química , Cobre/química , Dendrímeros/química , Espectroscopia de Ressonância de Spin Eletrônica , Espectrofotometria Ultravioleta , Ácidos Sulfônicos/química
15.
J Am Chem Soc ; 134(39): 16337-44, 2012 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-22953714

RESUMO

We describe the parallel, one-pot synthesis of core-photocleavable, poly(norbornene)-co-poly(ethylene glycol) (PEG) brush-arm star polymers (BASPs) via a route that combines the "graft-through" and "arm-first" methodologies for brush polymer and star polymer synthesis, respectively. In this method, ring-opening metathesis polymerization of a norbornene-PEG macromonomer generates small living brush initiators. Transfer of various amounts of this brush initiator to vials containing a photocleavable bis-norbornene cross-linker yielded a series of water-soluble BASPs with low polydispersities and molecular weights that increased geometrically as a function of the amount of bis-norbornene added. The BASP cores were cleaved upon exposure to UV light; the extent of photo-disassembly depended on the amount of cross-linker. EPR spectroscopy of nitroxide-labeled BASPs was used to probe differences between the BASP core and surface environments. We expect that BASPs will find applications as easy-to-synthesize, stimuli-responsive core-shell nanostructures.

16.
J Phys Chem A ; 116(1): 174-84, 2012 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-22133073

RESUMO

Polynitroxides with varying numbers of nitroxide groups (one to four) derived from different aromatic core structures show intramolecular electron spin-spin coupling. The scope of this study is to establish an easy methodology for extracting structural, dynamical, and thermodynamical information from the EPR spectra of these polynitroxides which might find use as spin probes in complex systems, such as biological and host/guest systems, and as polarizing agents in dynamic nuclear polarization (DNP) applications. Density functional theory (DFT) calculations at the B3LYP/6-31G(d) level provided information on the structural details such as bond lengths and angles in the gas phase, which were compared with the single crystal X-ray diffraction data in the solid state. Polarizable continuum model (PCM) calculations were performed to account for solvent influences. The electron paramagnetic resonance (EPR) spectra of the polynitroxides in chloroform were analyzed in detail to extract information such as the percentages of different conformers, hyperfine coupling constants a, and rotational correlation times τ(c). The temperature dependence on the line shape of the EPR spectra gave thermodynamic parameters ΔH and ΔS for the conformational transitions. These parameters were found to depend on the number and relative positions of the nitroxide and other polar groups.


Assuntos
Óxidos N-Cíclicos/química , Modelos Químicos , Clorofórmio , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Conformação Molecular , Teoria Quântica , Solventes , Marcadores de Spin , Temperatura , Termodinâmica
17.
J Am Chem Soc ; 133(49): 19953-9, 2011 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-22023139

RESUMO

Spin-labeled polylactide brush polymers were synthesized via ring-opening metathesis polymerization (ROMP), and nitroxide radicals were incorporated at three different locations of brush polymers: the end and the middle of the backbone, and the end of the side chains (periphery). Electron paramagnetic resonance (EPR) was used to quantitatively probe the macromolecular structure of brush polymers in dilute solutions. The peripheral spin-labels showed significantly higher mobility than the backbone labels, and in dimethylsulfoxide (DMSO), the backbone end labels were shown to be more mobile than the middle labels. Reduction of the nitroxide labels by a polymeric reductant revealed location-dependent reactivity of the nitroxide labels: peripheral nitroxides were much more reactive than the backbone nitroxides. In contrast, almost no difference was observed when a small molecule reductant was used. These results reveal that the dense side chains of brush polymers significantly reduce the interaction of the backbone region with external macromolecules, but allow free diffusion of small molecules.

18.
Langmuir ; 27(17): 10548-55, 2011 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-21749113

RESUMO

Communication between two molecules, one confined and excited (triplet or singlet) and one free and paramagnetic, has been explored through quenching of fluorescence and/or phosphorescence by nitroxides as paramagnetic radical species. Quenching of excited states by nitroxides has been investigated in solution, and the mechanism is speculated to involve charge transfer and/or exchange processes, both of which require close orbital interaction between excited molecule and quencher. We show in this report that such a quenching, which involves electron-electron spin communication, can occur even when there is a molecular wall between the two. The excited state molecule is confined within an organic capsule made up of two molecules of a deep cavity cavitand, octa acid, that exists in the anionic form in basic aqueous solution. The nitroxide is kept free in aqueous solution. (1)H NMR and EPR experiments were carried out to ascertain the location of the two molecules. The distance between the excited molecule and the paramagnetic quencher was manipulated by the use of cationic, anionic, and neutral nitroxide and also by selectively including the cationic nitroxide within the cavity of cucurbituril. Results presented here highlight the role of the lifetime of the encounter complex in electron-electron spin communication when the direct orbital overlap between the two molecules is prevented by the intermediary wall.


Assuntos
Óxidos de Nitrogênio/química , Elétrons , Estrutura Molecular , Soluções , Estereoisomerismo , Água/química
19.
Langmuir ; 27(9): 5624-32, 2011 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-21462968

RESUMO

The binding interactions between two paramagnetic cobaltocenium guests and the hosts cucurbit[7]uril (CB7) and cucurbit[8]uril (CB8) were investigated using a combination of electronic absorption, NMR, and electron paramagnetic resonance (EPR) spectroscopies, mass spectrometry, and X-ray crystallography. Guest 1, (4-amido-2,2,6,6-tetramethylpiperidine-1-oxyl)cobaltocenium, forms very stable inclusion complexes with CB7 and CB8. However, CB7 interacts with 1 by including the organometallic cobaltocenium unit, while CB8 engulfs the TEMPO residue. The corresponding equilibrium association constant (K) values are 2.8 ± 0.3 × 10(6) M(-1) for CB7•1 and 2.1 ± 1.0 × 10(8) M(-1) for CB8•1. Biradical guest 2, 1,1'-bis(4-amido-2,2,6,6-tetramethylpiperidine-1-oxyl)cobaltocenium, forms a very stable ternary complex with two CB8 hosts, in which each 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) residue is encircled by a host molecule. The structure of this ternary complex was confirmed in the solid state using single-crystal X-ray diffraction. Binding of the TEMPO side arms by the CB8 hosts gradually decreases the observed level of spin exchange coupling between the two nitroxide groups. In the final 2:1 complex, no spin exchange coupling was observed, but the initial levels of spin exchange coupling could be regenerated in a reversible fashion by adding a competing guest, adamantyltrimethylammonium (AdTMA), to the solution. The binding interactions between 2 and CB7 are similar but the stabilities of the 1:1 and 2:1 complexes are much lower than those of the corresponding CB8 complexes.

20.
Biomacromolecules ; 11(11): 3014-21, 2010 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-20958001

RESUMO

A key pathological event of prion and Alzheimer diseases is the formation of prion and amyloid plaques generated by peptide aggregation in the form of fibrils. Dendrimers have revealed their ability to prevent fibril formation and therefore cure neurodegenerative diseases. To provide information about the kinetics and the mechanism of peptide fibril formation and about the ability of the dendrimers to prevent peptide aggregation, we performed a computer-aided EPR analysis of the selected nitroxide spin probe 4-octyl-dimethylammonium,2,2,6,6-tetramethyl-piperidine-1-oxyl bromide (CAT8) in water solutions of the ß-amyloid peptide Aß 1-28 and the prion peptide PrP 185-208, which contain the fibril nucleation sites, in the absence and in the presence of phosphorus dendrimers. After a careful selection of the experimental conditions that allow aggregation to occur and to be monitored by EPR analysis over time, it was found that the Aß 1-28 fibrils formed in 220 min at 0.5 mM peptide, 0.05 mM CAT8, 0.04 mg/mL heparin, and pH = 5. As a consequence, the interacting sites available for cooperative interactions with CAT8 were engaged in the peptide-peptide interactions and a fraction of the probe was extracted in the fluid fibril/water interphase, while another fraction was trapped at the peptide/peptide interphase, showing a decrease in mobility. Conversely, in the presence of the dendrimer (at the selected, after several trials, peptide/dendrimer molar ratio = 50), due to dipole-dipole interactions with peptide monomers, the probe remained at the dendrimer/peptide interphase and the spectral parameters negligibly changed over time. A fraction of probes inserted in PrP 185-208 low-packed aggregates and monitored their fast formation after 90 min. However, the binding organization of the prion peptide negligibly changed upon aggregation in comparison to Aß 1-28. It is proposed that dendrimers mainly interfere in the lag (nucleation) phase of the prion peptide.


Assuntos
Dendrímeros/química , Doenças Neurodegenerativas/patologia , Peptídeos/química , Fósforo/química , Espectroscopia de Ressonância de Spin Eletrônica , Estrutura Molecular , Dobramento de Proteína , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...