Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Lab Chip ; 24(3): 537-548, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38168806

RESUMO

The human body is made up of approximately 40 trillion cells in close contact, with the cellular density of individual tissues varying from 1 million to 1 billion cells per cubic centimetre. Interactions between different cell types (termed heterotypic) are thus common in vivo. Communication between cells can take the form of direct cell-cell contact mediated by plasma membrane proteins or through paracrine signalling mediated through the release, diffusion, and receipt of soluble factors. There is currently no systematic method to investigate the relative contributions of these mechanisms to cell behaviour. In this paper, we detail the conception, development and validation of a microfluidic device that allows cell-cell contact and paracrine signalling in defined areas and over a variety of biologically relevant length scales, referred to as the interactome-device or 'I-device'. Importantly, by intrinsic device design features, cells in different regions in the device are exposed to four different interaction types, including a) no heterotypic cell interaction, b) only paracrine signalling, c) only cell-cell direct contact, or d) both forms of interaction (paracrine and cell-cell direct contact) together. The device design was validated by both mathematical modelling and experiments. Perfused stem cell culture over the medium term and the formation of direct contact between cells in the culture chambers was confirmed. The I-device offers significant flexibility, being able to be applied to any combination of adherent cells to determine the relative contributions of different communication mechanisms to cellular outcomes.


Assuntos
Comunicação Celular , Técnicas de Cultura de Células , Humanos , Técnicas de Cocultura , Comunicação Parácrina , Dispositivos Lab-On-A-Chip
2.
Biomacromolecules ; 19(3): 721-730, 2018 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-29437383

RESUMO

Capturing cell-secreted extracellular matrix (ECM) proteins through cooperative binding with high specificity and affinity is an important function of native tissue matrices during both tissue homeostasis and repair. However, while synthetic hydrogels, such as those based on poly(ethylene glycol) (PEG), are often proposed as ideal materials to deliver human mesenchymal stem cells (hMSCs) to sites of injury to enable tissue repair, they do not have this capability-a capability that would enable cells to actively remodel their local extracellular microenvironment and potentially provide the required feedback control for more effective tissue genesis. In this work, we detail a methodology that engenders poly(ethylene glycol) (PEG)-based two-dimensional substrates and three-dimensional porous hydrogels with the ability to capture desired extracellular matrix (ECM) proteins with high specificity. This "encoded" ECM protein capture is achieved by decorating the PEG-based materials with protein binding peptides (PBPs) synthesized to be specific in their binding of fibronectin, laminin, and collagen I, which are not only the most omnipresent ECM proteins in human tissues but, as we confirmed, are also secreted to differing extents by hMSCs under in vitro maintenance conditions. By encapsulating hMSCs into these PBP-functionalized hydrogels, and culturing them in protein-free maintenance media, we demonstrate that these PBPs not only actively recruit targeted ECM proteins as they are secreted from hMSCs but also retain them to much higher levels compared to nonfunctionalized gels. This novel approach thus enables the fabrication of encoded surfaces and hydrogels that capture cell-secreted proteins, with high specificity and affinity, in a programmable manner, ready for applications in many bioengineering applications, including bioactive surface coatings, bioassays, stem cell culture, tissue engineering, and regenerative medicine.


Assuntos
Proteínas da Matriz Extracelular , Hidrogéis/química , Células-Tronco Mesenquimais/metabolismo , Peptídeos/química , Polietilenoglicóis/química , Proteínas da Matriz Extracelular/química , Proteínas da Matriz Extracelular/isolamento & purificação , Proteínas da Matriz Extracelular/metabolismo , Humanos , Células-Tronco Mesenquimais/química , Células-Tronco Mesenquimais/citologia
3.
Stem Cells Transl Med ; 4(2): 156-64, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25575526

RESUMO

The potential for the clinical application of stem cells in tissue regeneration is clearly significant. However, this potential has remained largely unrealized owing to the persistent challenges in reproducibly, with tight quality criteria, and expanding and controlling the fate of stem cells in vitro and in vivo. Tissue engineering approaches that rely on reformatting traditional Food and Drug Administration-approved biomedical polymers from fixation devices to porous scaffolds have been shown to lack the complexity required for in vitro stem cell culture models or translation to in vivo applications with high efficacy. This realization has spurred the development of advanced mimetic biomaterials and scaffolds to increasingly enhance our ability to control the cellular microenvironment and, consequently, stem cell fate. New insights into the biology of stem cells are expected to eventuate from these advances in material science, in particular, from synthetic hydrogels that display physicochemical properties reminiscent of the natural cell microenvironment and that can be engineered to display or encode essential biological cues. Merging these advanced biomaterials with high-throughput methods to systematically, and in an unbiased manner, probe the role of scaffold biophysical and biochemical elements on stem cell fate will permit the identification of novel key stem cell behavioral effectors, allow improved in vitro replication of requisite in vivo niche functions, and, ultimately, have a profound impact on our understanding of stem cell biology and unlock their clinical potential in tissue engineering and regenerative medicine.


Assuntos
Materiais Biomiméticos , Medicina Regenerativa , Células-Tronco , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Materiais Biomiméticos/química , Materiais Biomiméticos/uso terapêutico , Humanos , Medicina Regenerativa/métodos , Medicina Regenerativa/normas , Células-Tronco/citologia , Células-Tronco/metabolismo , Engenharia Tecidual/métodos , Engenharia Tecidual/normas , Estados Unidos , United States Food and Drug Administration
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA