Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Cell Fact ; 21(1): 80, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35534897

RESUMO

BACKGROUND: Due to their huge biodiversity and the capability to produce a wide range of secondary metabolites, lichens have a great potential in biotechnological applications. They have, however, hardly been used as cell factories to date, as it is considered to be difficult and laborious to cultivate lichen partners in pure or co-culture in the laboratory. The various methods used to isolate lichen fungi, based on either the ascospores, the conidia, or the thallus, have so far not been compared or critically examined. Therefore, here we systematically investigate and compare the known methods and two new methods to identify the most suitable technology for isolation of fungi from lichens. RESULTS: Within this study six lichen fungi species were isolated and propagated as pure cultures. All of them formed colonies within one month. In case of lichens with ascocarps the spore discharge was the most suitable method. Spores were already discharged within 2 days and germinated within only four days and the contamination rate was low. Otherwise, the soredia and thallus method without homogenization, as described in this work, are also well suited to obtain pure fungal cultures. For the isolation of algae, we were also successful with the thallus method without homogenization. CONCLUSION: With the methods described here and the proposed strategic approach, we believe that a large proportion of the lichen fungi can be cultivated within a reasonable time and effort. Based on this, methods of controlled cultivation and co-cultivation must now be developed in order to use the potential of lichens with regard to their secondary metabolites, but also for other applications.


Assuntos
Ascomicetos , Líquens , Biodiversidade , Líquens/microbiologia , Esporos Fúngicos , Simbiose
2.
PLoS One ; 14(5): e0216675, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31136587

RESUMO

Taxonomic identifications in some groups of lichen-forming fungi have been challenge largely due to the scarcity of taxonomically relevant features and limitations of morphological and chemical characters traditionally used to distinguish closely related taxa. Delineating species boundaries in closely related species or species complexes often requires a range of multisource data sets and comprehensive analytical methods. Here we aim to examine species boundaries in a group of saxicolous lichen forming fungi, the Aspiciliella intermutans complex (Megasporaceae), widespread mainly in the Mediterranean. We gathered DNA sequences of the nuclear ribosomal internal transcribed spacer (nuITS), the nuclear large subunit (nuLSU), the mitochondrial small subunit (mtSSU) ribosomal DNA, and the DNA replication licensing factor MCM7 from 80 samples mostly from Iran, Caucasia, Greece and eastern Europe. We used a combination of phylogenetic strategies and a variety of empirical, sequence-based species delimitation approaches to infer species boundaries in this group. The latter included: the automatic barcode gap discovery (ABGD), the multispecies coalescent approach *BEAST and Bayesian Phylogenetics and Phylogeography (BPP) program. Different species delimitation scenarios were compared using Bayes factors species delimitation analysis. Furthermore, morphological, chemical, ecological and geographical features of the sampled specimens were examined. Our study uncovered cryptic species diversity in A. intermutans and showed that morphology-based taxonomy may be unreliable, underestimating species diversity in this group of lichens. We identified a total of six species-level lineages in the A. intermutans complex using inferences from multiple empirical operational criteria. We found little corroboration between morphological and ecological features with our proposed candidate species, while secondary metabolite data do not corroborate tree topology. The present study on the A. intermutans species-complex indicates that the genus Aspiciliella, as currently circumscribed, is more diverse in Eurasia than previously expected.


Assuntos
Ascomicetos/classificação , Ascomicetos/genética , Líquens/genética , Núcleo Celular/genética , Código de Barras de DNA Taxonômico/métodos , DNA Fúngico/genética , Líquens/classificação , Região do Mediterrâneo , Fenótipo , Filogenia , Filogeografia , Análise de Sequência de DNA , Especificidade da Espécie
3.
Biodivers Data J ; (4): e7057, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27099549

RESUMO

BACKGROUND: Urban green spaces can harbor a considerable species richness of plants and animals. A few studies on single species groups indicate important habitat functions of cemeteries, but this land use type is clearly understudied compared to parks. Such data are important as they (i) illustrate habitat functions of a specific, but ubiquitous urban land-use type and (ii) may serve as a basis for management approaches. NEW INFORMATION: We sampled different groups of plants and animals in the Weißensee Jewish Cemetery in Berlin (WJC) which is one of the largest Jewish cemeteries in Europe. With a total of 608 species of plants and animals, this first multi-taxon survey revealed a considerable biological richness in the WJC. In all, 363 wild-growing vascular plant, 72 lichen and 26 bryophyte taxa were recorded. The sampling also yielded 34 bird and 5 bat species as well as 39 ground beetle, 5 harvestman and 64 spider species. Some species are new records for Berlin.

4.
Exp Appl Acarol ; 41(1-2): 1-10, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17333459

RESUMO

The aim of the present study was to identify food sources of bark-living oribatid mites to investigate if trophic niche differentiation contributes to the diversity of bark living Oribatida. We measured the natural variation in stable isotope ratios ((15)N/(14)N, (13)C/(12)C) in oribatid mites from the bark of oak (Quercus robur), beech (Fagus sylvatica), spruce (Picea abies) and pine (Pinus sylvestris) trees and their potential food sources, i.e., the covering vegetation of the bark (bryophytes, lichens, algae, fungi). As a baseline for calibration the stable isotope signatures of the bark of the four tree species were measured and set to zero. Oribatid mite stable isotope ratios spanned over a range of about 13 delta units for (15)N and about 7 delta units for (13)C suggesting that they span over about three trophic levels. Different stable isotope signatures indicate that bark living oribatid mites feed on different food sources, i.e., occupy distinct trophic niches. After calibration stable isotope signatures of respective oribatid mite species of the four tree species were similar indicating close association of oribatid mites with the corticolous cover as food source. Overall, the results support the hypothesis that trophic niche differentiation of bark living oribatid mites contributes to the high diversity of the group.


Assuntos
Carbono/metabolismo , Ácaros/fisiologia , Nitrogênio/metabolismo , Animais , Isótopos de Carbono , Eucariotos , Fagus , Gleiquênias , Cadeia Alimentar , Fungos , Líquens , Isótopos de Nitrogênio , Picea , Pinus , Casca de Planta , Quercus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...