Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(8)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38672670

RESUMO

Bladder cancer (BC) diagnosis is reliant on cystoscopy, an invasive procedure associated with urinary tract infections. This has sparked interest in identifying noninvasive biomarkers in body fluids such as blood and urine. A source of biomarkers in these biofluids are extracellular vesicles (EVs), nanosized vesicles that contain a wide array of molecular cargo, including small noncoding RNA such as transfer RNA-derived fragments (tRF) and microRNA. Here, we performed small-RNA next-generation sequencing from EVs from urine and serum, as well as from serum supernatant. RNA was extracted from 15 non-cancer patients (NCPs) with benign findings in cystoscopy and 41 patients with non-muscle invasive BC. Urine and serum were collected before transurethral resection of bladder tumors (TUR-b) and at routine post-surgery check-ups. We compared levels of tRFs in pre-surgery samples to samples from NCPs and post-surgery check-ups. To further verify our findings, samples from 10 patients with stage T1 disease were resequenced. When comparing tRF expression in urine EVs between T1 stage BC patients and NCPs, 14 differentially expressed tRFs (DEtRFs) were identified. In serum supernatant, six DEtRFs were identified among stage T1 patients when comparing pre-surgery to post-surgery samples and four DEtRFs were found when comparing pre-surgery samples to NCPs. By performing a blast search, we found that sequences of DEtRFs aligned with genomic sequences pertaining to processes relevant to cancer development, such as enhancers, regulatory elements and CpG islands. Our findings display a number of tRFs that may hold potential as biomarkers for the diagnosis and recurrence-free survival of BC.

2.
Front Microbiol ; 15: 1373344, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38596376

RESUMO

The DNA damage inducible SOS response in bacteria serves to increase survival of the species at the cost of mutagenesis. The SOS response first initiates error-free repair followed by error-prone repair. Here, we have employed a multi-omics approach to elucidate the temporal coordination of the SOS response. Escherichia coli was grown in batch cultivation in bioreactors to ensure highly controlled conditions, and a low dose of the antibiotic ciprofloxacin was used to activate the SOS response while avoiding extensive cell death. Our results show that expression of genes involved in error-free and error-prone repair were both induced shortly after DNA damage, thus, challenging the established perception that the expression of error-prone repair genes is delayed. By combining transcriptomics and a sub-proteomics approach termed signalomics, we found that the temporal segregation of error-free and error-prone repair is primarily regulated after transcription, supporting the current literature. Furthermore, the heterology index (i.e., the binding affinity of LexA to the SOS box) was correlated to the maximum increase in gene expression and not to the time of induction of SOS genes. Finally, quantification of metabolites revealed increasing pyrimidine pools as a late feature of the SOS response. Our results elucidate how the SOS response is coordinated, showing a rapid transcriptional response and temporal regulation of mutagenesis on the protein and metabolite levels.

3.
Front Microbiol ; 14: 1260120, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37822747

RESUMO

The past few decades have been plagued by an increasing number of infections caused by antibiotic resistant bacteria. To mitigate the rise in untreatable infections, we need new antibiotics with novel targets and drug combinations that reduce resistance development. The novel ß-clamp targeting antimicrobial peptide BTP-001 was recently shown to have a strong additive effect in combination with the halogenated pyrrolopyrimidine JK-274. In this study, the molecular basis for this effect was examined by a comprehensive proteomic and metabolomic study of the individual and combined effects on Staphylococcus aureus. We found that JK-274 reduced activation of several TCA cycle enzymes, likely via increasing the cellular nitric oxide stress, and BTP-001 induced oxidative stress in addition to inhibiting replication, translation, and DNA repair processes. Analysis indicated that several proteins linked to stress were only activated in the combination and not in the single treatments. These results suggest that the strong additive effect is due to the activation of multiple stress responses that can only be triggered by the combined effect of the individual mechanisms. Importantly, the combination dose required to eradicate S. aureus was well tolerated and did not affect cell viability of immortalized human keratinocyte cells, suggesting a species-specific response. Our findings demonstrate the potential of JK-274 and BTP-001 as antibiotic drug candidates and warrant further studies.

4.
Mol Genet Genomics ; 298(3): 555-566, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36856825

RESUMO

The cancer syndrome polymerase proofreading-associated polyposis results from germline mutations in the POLE and POLD1 genes. Mutations in the exonuclease domain of these genes are associated with hyper- and ultra-mutated tumors with a predominance of base substitutions resulting from faulty proofreading during DNA replication. When a new variant is identified by gene testing of POLE and POLD1, it is important to verify whether the variant is associated with PPAP or not, to guide genetic counseling of mutation carriers. In 2015, we reported the likely pathogenic (class 4) germline POLE c.1373A > T p.(Tyr458Phe) variant and we have now characterized this variant to verify that it is a class 5 pathogenic variant. For this purpose, we investigated (1) mutator phenotype in tumors from two carriers, (2) mutation frequency in cell-based mutagenesis assays, and (3) structural consequences based on protein modeling. Whole-exome sequencing of two tumors identified an ultra-mutator phenotype with a predominance of base substitutions, the majority of which are C > T. A SupF mutagenesis assay revealed increased mutation frequency in cells overexpressing the variant of interest as well as in isogenic cells encoding the variant. Moreover, exonuclease repair yeast-based assay supported defect in proofreading activity. Lastly, we present a homology model of human POLE to demonstrate structural consequences leading to pathogenic impact of the p.(Tyr458Phe) mutation. The three lines of evidence, taken together with updated co-segregation and previously published data, allow the germline variant POLE c.1373A > T p.(Tyr458Phe) to be reclassified as a class 5 variant. That means the variant is associated with PPAP.


Assuntos
DNA Polimerase II , Neoplasias , Humanos , DNA Polimerase II/genética , DNA Polimerase II/química , DNA Polimerase II/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , Neoplasias/genética , Mutação , Exonucleases/genética , Exonucleases/metabolismo
5.
Oncogene ; 42(7): 541-544, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36564469

RESUMO

Proliferating Cell Nuclear Antigen (PCNA) is a highly conserved protein essential for DNA replication, repair and scaffold functions in the cytosol. Specific inhibition of PCNA in cancer cells is an attractive anti-cancer strategy. ATX-101 is a first-in-class drug targeting PCNA, primarily in cellular stress regulation. Multiple in vivo and in vitro investigations demonstrated anti-cancer activity of ATX-101 in many tumor types and a potentiating effect on the activity of anti-cancer therapies. Healthy cells were less affected. Based on preclinical data, a clinical phase 1 study was initiated. Twenty-five patients with progressive, late-stage solid tumors were treated with weekly ATX-101 infusions at four dose levels (20, 30, 45, 60 mg/m2). ATX-101 showed a favorable safety profile supporting that vital cellular functions are not compromised in healthy cells. Mild and moderate infusion-related reactions were observed in 64% of patients. ATX-101 was quickly cleared from blood with elimination half-lives of less than 30 min at all dose levels, probably due to both, a quick cell penetration and peptide digestion in serum, as demonstrated in vivo. No tumor responses were observed but stable disease was seen in 70% of the efficacy population (n = 20). Further studies have been initiated to provide evidence of efficacy. Trial registration numbers: ANZCTR 375262 and ANZCTR 375319.


Assuntos
Replicação do DNA , Neoplasias , Humanos , Antígeno Nuclear de Célula em Proliferação/genética , Infusões Intravenosas , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Ácido Desoxicólico
6.
Oncogene ; 42(8): 613-624, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36564470

RESUMO

The essential roles of proliferating cell nuclear antigen (PCNA) as a scaffold protein in DNA replication and repair are well established, while its cytosolic roles are less explored. Two metabolic enzymes, alpha-enolase (ENO1) and 6-phosphogluconate dehydrogenase (6PGD), both contain PCNA interacting motifs. Mutation of the PCNA interacting motif APIM in ENO1 (F423A) impaired its binding to PCNA and resulted in reduced cellular levels of ENO1 protein, reduced growth rate, reduced glucose consumption, and reduced activation of AKT. Metabolome and signalome analysis reveal large consequences of impairing the direct interaction between PCNA and ENO1. Metabolites above ENO1 in glycolysis accumulated while lower glycolytic and TCA cycle metabolite pools decreased in the APIM-mutated cells; however, their overall energetic status were similar to parental cells. Treating haematological cancer cells or activated primary monocytes with a PCNA targeting peptide drug containing APIM (ATX-101) also lead to a metabolic shift characterized by reduced glycolytic rate. In addition, we show that ATX-101 treatments reduced the ENO1 - PCNA interaction, the ENO1, GAPDH and 6PGD protein levels, as well as the 6PGD activity. Here we report for the first time that PCNA acts as a scaffold for metabolic enzymes, and thereby act as a direct regulator of primary metabolism.


Assuntos
Antígeno Nuclear de Célula em Proliferação , Humanos , Ácido Desoxicólico , Replicação do DNA , Mutação , Peptídeos/genética , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo
7.
Antibiotics (Basel) ; 11(8)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35892374

RESUMO

Currently, there is a world-wide rise in antibiotic resistance causing burdens to individuals and public healthcare systems. At the same time drug development is lagging behind. Therefore, finding new ways of treating bacterial infections either by identifying new agents or combinations of drugs is of utmost importance. Additionally, if combination therapy is based on agents with different modes of action, resistance is less likely to develop. The synthesis of 21 fused pyrimidines and a structure-activity relationship study identified two 6-aryl-7H-pyrrolo [2,3-d] pyrimidin-4-amines with potent activity towards Staphylococcus aureus. The MIC-value was found to be highly dependent on a bromo or iodo substitution in the 4-benzylamine group and a hydroxyl in the meta or para position of the 6-aryl unit. The most active bromo and iodo derivatives had MIC of 8 mg/L. Interestingly, the most potent compounds experienced a four-fold lower MIC-value when they were combined with the antimicrobial peptide betatide giving MIC of 1-2 mg/L. The front runner bromo derivative also has a low activity towards 50 human kinases, including thymidylate monophosphate kinase, a putative antibacterial target.

8.
Cancers (Basel) ; 14(2)2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35053455

RESUMO

Cell proliferation requires the orchestrated actions of a myriad of proteins regulating DNA replication, DNA repair and damage tolerance, and cell cycle. Proliferating cell nuclear antigen (PCNA) is a master regulator which interacts with multiple proteins functioning in these processes, and this makes PCNA an attractive target in anticancer therapies. Here, we show that a cell-penetrating peptide containing the AlkB homolog 2 PCNA-interacting motif (APIM), ATX-101, has antitumor activity in a panel of human glioblastoma multiforme (GBM) cell lines and patient-derived glioma-initiating cells (GICs). Their sensitivity to ATX-101 was not related to cellular levels of PCNA, or p53, PTEN, or MGMT status. However, ATX-101 reduced Akt/mTOR and DNA-PKcs signaling, and a correlation between high Akt activation and sensitivity for ATX-101 was found. ATX-101 increased the levels of γH2AX, DNA fragmentation, and apoptosis when combined with radiotherapy (RT). In line with the in vitro results, ATX-101 strongly reduced tumor growth in two subcutaneous xenografts and two orthotopic GBM models, both as a single agent and in combination with RT. The ability of ATX-101 to sensitize cells to RT is promising for further development of this compound for use in GBM.

9.
Front Microbiol ; 12: 764451, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899646

RESUMO

New antibacterial drugs with novel modes of action are urgently needed as antibiotic resistance in bacteria is increasing and spreading throughout the world. In this study, we aimed to explore the possibility of using APIM-peptides targeting the bacterial ß-clamp for treatment of skin infections. We selected a lead peptide, named betatide, from five APIM-peptide candidates based on their antibacterial and antimutagenic activities in both G+ and G- bacteria. Betatide was further tested in minimal inhibitory concentration (MIC) assays in ESKAPE pathogens, in in vitro infection models, and in a resistance development assay. We found that betatide is a broad-range antibacterial which obliterated extracellular bacterial growth of methicillin-resistant Staphylococcus epidermidis (MRSE) in cell co-cultures without affecting the epithelialization of HaCaT keratinocytes. Betatide also reduced the number of intracellular Staphylococcus aureus in infected HaCaT cells. Furthermore, long-time exposure to betatide at sub-MICs induced minimal or no increase in resistance development compared to ciprofloxacin and gentamicin or ampicillin in S. aureus and Escherichia coli. These properties support the potential of betatide for the treatment of topical skin infections.

10.
Mol Ther Nucleic Acids ; 25: 444-454, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34484867

RESUMO

Cell-penetrating peptides (CPPs) are increasingly used for cellular drug delivery in both pro- and eukaryotic cells, and oligoarginines have attracted special attention. How arginine-rich CPPs translocate across the cell envelope, particularly for prokaryotes, is still unknown. Arginine-rich CPPs efficiently deliver antimicrobial peptide nucleic acid (PNA) to its intracellular mRNA target in bacteria. We show that resistance to PNA conjugated to an arginine-rich CPP in Escherichia coli requires multiple genetic modifications and is specific for the CPP part and not to the PNA part. An integral part of the resistance was the constitutively activated Cpx-envelope stress response system (cpx∗), which decreased the cytoplasmic membrane potential. This indicates an indirect energy-dependent uptake mechanism for antimicrobials conjugated to arginine-rich CPPs. In agreement, cpx∗ mutants showed low-level resistance to aminoglycosides and an arginine-rich CPP conjugated to a peptide targeting the DNA sliding clamp, i.e., similar uptake in E. coli for these antimicrobial compounds.

11.
Curr Issues Mol Biol ; 43(1): 286-300, 2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34199766

RESUMO

Bladder cancer (BC) is currently diagnosed and monitored by cystoscopy, a costly and invasive procedure. Potential biomarkers in urine, blood, and, more recently, extracellular vesicles (EVs), have been explored as non-invasive alternatives for diagnosis and surveillance of BC. EVs are nanovesicles secreted by most cell types containing diverse molecular cargo, including different types of small RNAs, such as microRNA (miRNA). In this study, we performed next-generation sequencing of EV-contained miRNA isolated from urine and serum of 41 patients with non-muscle invasive BC (27 stage Ta, 14 stage T1) and 15 non-cancer patients (NCP) with benign cystoscopy findings. MiRNA sequencing was also performed on serum supernatant samples for T1 patients. To identify potential BC-specific biomarkers, expression levels of miRNA in presurgery samples were compared to those at postsurgery check-ups, and to NCPs. Results showed that two miRNAs, urinary EV-contained miR-451a and miR-486-5p, were significantly upregulated in presurgery samples from T1 patients compared to postsurgery check-up samples. This was confirmed in a replica EV/RNA isolation and sequencing run of 10 T1 patients from the primary run; however, analyses revealed no differential expression of miRNAs in serum EVs, serum supernatant, or when comparing BC patients to NCPs. This is the first study to investigate EV-containing miRNA sequencing in pre- and postsurgery BC patient samples and our findings suggest that urinary EV-contained miR-451a and miR-486-5p may be potential biomarkers for recurrence-free survival of BC patients with stage T1 disease.


Assuntos
Biomarcadores Tumorais/genética , Vesículas Extracelulares/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neoplasias da Bexiga Urinária/genética , Idoso , Idoso de 80 Anos ou mais , Apoptose/genética , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/urina , Diferenciação Celular/genética , Feminino , Ontologia Genética , Humanos , Masculino , MicroRNAs/sangue , MicroRNAs/urina , Pessoa de Meia-Idade , Transdução de Sinais/genética , Neoplasias da Bexiga Urinária/cirurgia
12.
Biomolecules ; 11(6)2021 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-34198819

RESUMO

Drugs targeting DNA and RNA in mammalian cells or viruses can also affect bacteria present in the host and thereby induce the bacterial SOS system. This has the potential to increase mutagenesis and the development of antimicrobial resistance (AMR). Here, we have examined nucleoside analogues (NAs) commonly used in anti-viral and anti-cancer therapies for potential effects on mutagenesis in Escherichia coli, using the rifampicin mutagenicity assay. To further explore the mode of action of the NAs, we applied E. coli deletion mutants, a peptide inhibiting Pol V (APIM-peptide) and metabolome and proteome analyses. Five out of the thirteen NAs examined, including three nucleoside reverse transcriptase inhibitors (NRTIs) and two anti-cancer drugs, increased the mutation frequency in E. coli by more than 25-fold at doses that were within reported plasma concentration range (Pl.CR), but that did not affect bacterial growth. We show that the SOS response is induced and that the increase in mutation frequency is mediated by the TLS polymerase Pol V. Quantitative mass spectrometry-based metabolite profiling did not reveal large changes in nucleoside phosphate or other central carbon metabolite pools, which suggests that the SOS induction is an effect of increased replicative stress. Our results suggest that NAs/NRTIs can contribute to the development of AMR and that drugs inhibiting Pol V can reverse this mutagenesis.


Assuntos
DNA Polimerase Dirigida por DNA/genética , Proteínas de Escherichia coli/genética , Mutagênese/efeitos dos fármacos , Nucleosídeos/análogos & derivados , Nucleosídeos/farmacologia , Antineoplásicos/farmacologia , Antivirais/farmacologia , Testes de Sensibilidade Microbiana/métodos , Mutagênese/fisiologia , Estavudina/análogos & derivados , Estavudina/farmacologia
13.
Front Microbiol ; 12: 631557, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815313

RESUMO

Antimicrobial resistance is an increasing threat to global health and challenges the way we treat infections. Peptides containing the PCNA interacting motif APIM (APIM-peptides) were recently shown to bind to the bacterial PCNA homolog, the beta (ß)-clamp, and to have both antibacterial and anti-mutagenic activities. In this study we explore the antibacterial effects of these peptides on Staphylococcus epidermidis, a bacterial species commonly found in prosthetic joint infections (PJI). Drug-resistant bacterial isolates from PJIs often lead to difficult-to-treat chronic infections. We show that APIM-peptides have a rapid bactericidal effect which when used at sublethal levels also increase the efficacy of gentamicin. In addition, APIM-peptides reduce development and eliminate already existing S. epidermidis biofilm. To study the potential use of APIM-peptides to prevent PJI, we used an in vivo bone graft model in rats where APIM-peptide, gentamicin, or a combination of the two was added to cement. The bone grafts containing cement with the combination was more effective than cement containing only gentamicin, which is the current standard of care. In summary, these results suggest that APIM-peptides can be a promising new drug candidate for anti-infective implant materials to use in the fight against resistant bacteria and chronic PJI.

14.
Nucleic Acids Res ; 48(10): 5540-5554, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32347931

RESUMO

In the fight against antimicrobial resistance, the bacterial DNA sliding clamp, ß-clamp, is a promising drug target for inhibition of DNA replication and translesion synthesis. The ß-clamp and its eukaryotic homolog, PCNA, share a C-terminal hydrophobic pocket where all the DNA polymerases bind. Here we report that cell penetrating peptides containing the PCNA-interacting motif APIM (APIM-peptides) inhibit bacterial growth at low concentrations in vitro, and in vivo in a bacterial skin infection model in mice. Surface plasmon resonance analysis and computer modeling suggest that APIM bind to the hydrophobic pocket on the ß-clamp, and accordingly, we find that APIM-peptides inhibit bacterial DNA replication. Interestingly, at sub-lethal concentrations, APIM-peptides have anti-mutagenic activities, and this activity is increased after SOS induction. Our results show that although the sequence homology between the ß-clamp and PCNA are modest, the presence of similar polymerase binding pockets in the DNA clamps allows for binding of the eukaryotic binding motif APIM to the bacterial ß-clamp. Importantly, because APIM-peptides display both anti-mutagenic and growth inhibitory properties, they may have clinical potential both in combination with other antibiotics and as single agents.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , DNA Polimerase III/antagonistas & inibidores , Peptídeos/química , Peptídeos/farmacologia , Animais , Antibacterianos/metabolismo , Antibacterianos/uso terapêutico , DNA Polimerase III/química , Replicação do DNA/efeitos dos fármacos , DNA Polimerase Dirigida por DNA , Feminino , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Camundongos Endogâmicos BALB C , Mutagênese/efeitos dos fármacos , Inibidores da Síntese de Ácido Nucleico/química , Inibidores da Síntese de Ácido Nucleico/farmacologia , Inibidores da Síntese de Ácido Nucleico/uso terapêutico , Peptídeos/metabolismo , Peptídeos/uso terapêutico , Antígeno Nuclear de Célula em Proliferação/metabolismo , Domínios e Motivos de Interação entre Proteínas , Infecções Cutâneas Estafilocócicas/tratamento farmacológico , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/crescimento & desenvolvimento
15.
Biomolecules ; 10(3)2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32192191

RESUMO

Helicase-like transcription factor (HLTF) and SNF2, histone-linker, PHD and RING finger domain-containing helicase (SHPRH), the two human homologs of yeast Rad5, are believed to have a vital role in DNA damage tolerance (DDT). Here we show that HLTF, SHPRH and HLTF/SHPRH knockout cell lines show different sensitivities towards UV-irradiation, methyl methanesulfonate (MMS), cisplatin and mitomycin C (MMC), which are drugs that induce different types of DNA lesions. In general, the HLTF/SHPRH double knockout cell line was less sensitive than the single knockouts in response to all drugs, and interestingly, especially to MMS and cisplatin. Using the SupF assay, we detected an increase in the mutation frequency in HLTF knockout cells both after UV- and MMS-induced DNA lesions, while we detected a decrease in mutation frequency over UV lesions in the HLTF/SHPRH double knockout cells. No change in the mutation frequency was detected in the HLTF/SHPRH double knockout cell line after MMS treatment, even though these cells were more resistant to MMS and grew faster than the other cell lines after treatment with DNA damaging agents. This phenotype could possibly be explained by a reduced activation of checkpoint kinase 2 (CHK2) and MCM2 (a component of the pre-replication complex) after MMS treatment in cells lacking SHPRH. Our data reveal both distinct and common roles of the human RAD5 homologs dependent on the nature of DNA lesions, and identified SHPRH as a regulator of CHK2, a central player in DNA damage response.


Assuntos
Dano ao DNA , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Mitomicina/efeitos adversos , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Raios Ultravioleta , Linhagem Celular , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Humanos , Mitomicina/farmacologia , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/genética
16.
Int J Mol Sci ; 21(3)2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31973093

RESUMO

To prevent replication fork collapse and genome instability under replicative stress, DNA damage tolerance (DDT) mechanisms have evolved. The RAD5 homologs, HLTF (helicase-like transcription factor) and SHPRH (SNF2, histone-linker, PHD and RING finger domain-containing helicase), both ubiquitin ligases, are involved in several DDT mechanisms; DNA translesion synthesis (TLS), fork reversal/remodeling and template switch (TS). Here we show that these two human RAD5 homologs contain functional APIM PCNA interacting motifs. Our results show that both the role of HLTF in TLS in HLTF overexpressing cells, and nuclear localization of SHPRH, are dependent on interaction of HLTF and SHPRH with PCNA. Additionally, we detected multiple changes in the mutation spectra when APIM in overexpressed HLTF or SHPRH were mutated compared to overexpressed wild type proteins. In plasmids from cells overexpressing the APIM mutant version of HLTF, we observed a decrease in C to T transitions, the most common mutation caused by UV irradiation, and an increase in mutations on the transcribed strand. These results strongly suggest that direct binding of HLTF and SHPRH to PCNA is vital for their function in DDT.


Assuntos
Dano ao DNA/fisiologia , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , DNA/metabolismo , DNA Helicases/genética , Replicação do DNA/fisiologia , Proteínas de Ligação a DNA/genética , Instabilidade Genômica , Células HEK293 , Humanos , Mutação , Fatores de Transcrição/genética , Ubiquitina , Ubiquitina-Proteína Ligases/genética , Raios Ultravioleta
17.
Nat Commun ; 10(1): 5460, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31784530

RESUMO

Base excision repair (BER) initiated by alkyladenine DNA glycosylase (AAG) is essential for removal of aberrantly methylated DNA bases. Genome instability and accumulation of aberrant bases accompany multiple diseases, including cancer and neurological disorders. While BER is well studied on naked DNA, it remains unclear how BER efficiently operates on chromatin. Here, we show that AAG binds to chromatin and forms complex with RNA polymerase (pol) II. This occurs through direct interaction with Elongator and results in transcriptional co-regulation. Importantly, at co-regulated genes, aberrantly methylated bases accumulate towards the 3'end in regions enriched for BER enzymes AAG and APE1, Elongator and active RNA pol II. Active transcription and functional Elongator are further crucial to ensure efficient BER, by promoting AAG and APE1 chromatin recruitment. Our findings provide insights into genome stability maintenance in actively transcribing chromatin and reveal roles of aberrantly methylated bases in regulation of gene expression.


Assuntos
Cromatina/metabolismo , DNA Glicosilases/metabolismo , Reparo do DNA/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Regulação da Expressão Gênica/genética , RNA Polimerase II/metabolismo , Cromatina/genética , Metilação de DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Expressão Gênica , Instabilidade Genômica , Células HEK293 , Humanos , RNA Polimerase II/genética , Elongação da Transcrição Genética , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo
18.
Sci Rep ; 9(1): 11065, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31363131

RESUMO

In most mammalian cells, DNA replication occurs once, and only once between cell divisions. Replication initiation is a highly regulated process with redundant mechanisms that prevent errant initiation events. In lower eukaryotes, replication is initiated from a defined consensus sequence, whereas a consensus sequence delineating mammalian origin of replication has not been identified. Here we show that 5-hydroxymethylcytosine (5hmC) is present at mammalian replication origins. Our data support the hypothesis that 5hmC has a role in cell cycle regulation. We show that 5hmC level is inversely proportional to proliferation; indeed, 5hmC negatively influences cell division by increasing the time a cell resides in G1. Our data suggest that 5hmC recruits replication-licensing factors, then is removed prior to or during origin firing. Later we propose that TET2, the enzyme catalyzing 5mC to 5hmC conversion, acts as barrier to rereplication. In a broader context, our results significantly advance the understating of 5hmC involvement in cell proliferation and disease states.


Assuntos
5-Metilcitosina/análogos & derivados , Ciclo Celular/genética , Divisão Celular/fisiologia , Proliferação de Células/fisiologia , Replicação do DNA/fisiologia , 5-Metilcitosina/metabolismo , Células HeLa , Humanos , Origem de Replicação
19.
Cell Mol Life Sci ; 76(24): 4923-4943, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31134302

RESUMO

Proliferating cell nuclear antigen (PCNA) is a cellular hub in DNA metabolism and a potential drug target. Its binding partners carry a short linear motif (SLiM) known as the PCNA-interacting protein-box (PIP-box), but sequence-divergent motifs have been reported to bind to the same binding pocket. To investigate how PCNA accommodates motif diversity, we assembled a set of 77 experimentally confirmed PCNA-binding proteins and analyzed features underlying their binding affinity. Combining NMR spectroscopy, affinity measurements and computational analyses, we corroborate that most PCNA-binding motifs reside in intrinsically disordered regions, that structure preformation is unrelated to affinity, and that the sequence-patterns that encode binding affinity extend substantially beyond the boundaries of the PIP-box. Our systematic multidisciplinary approach expands current views on PCNA interactions and reveals that the PIP-box affinity can be modulated over four orders of magnitude by positive charges in the flanking regions. Including the flanking regions as part of the motif is expected to have broad implications, particularly for interpretation of disease-causing mutations and drug-design, targeting DNA-replication and -repair.


Assuntos
Motivos de Aminoácidos/genética , Proteínas de Ligação a DNA/química , DNA/química , Antígeno Nuclear de Célula em Proliferação/química , DNA/genética , Reparo do DNA/genética , Replicação do DNA/genética , Proteínas de Ligação a DNA/genética , Humanos , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Espectroscopia de Ressonância Magnética , Antígeno Nuclear de Célula em Proliferação/genética , Conformação Proteica
20.
Oncotarget ; 10(68): 7185-7197, 2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31921382

RESUMO

Receptor tyrosine kinases (RTKs), such as HER2 and/or EGFR are important therapeutic targets in multiple cancer cells. Low and/or short response to targeted therapies are often due to activation of compensatory signaling pathways, and therefore a combination of kinase inhibitors with other anti-cancer therapies have been proposed as promising strategies. PCNA is recently shown to have non-canonical cytosolic roles, and targeting PCNA with a cell-penetrating peptide containing the PCNA-interacting motif APIM is shown to mediate changes in central signaling pathways such as PI3K/Akt and MAPK, acting downstream of multiple RTKs. In this study, we show how targeting PCNA increased the anti-cancer activity of EGFR/HER2/VEGFR inhibition in vitro as well as in vivo. The combination treatment resulted in reduced tumor load and increased the survival compared to either single agent treatments. The combination treatment affected multiple cellular signaling responses not seen by EGFR/HER2/VEGFR inhibition alone, and changes were seen in pathways determining protein degradation, ER-stress, apoptosis and autophagy. Our results suggest that targeting the non-canonical roles of PCNA in cellular signaling have the potential to improve targeted therapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...