Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Small ; : e2307742, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326101

RESUMO

Biodegradable medical implants promise to benefit patients by eliminating risks and discomfort associated with permanent implantation or surgical removal. The time until full resorption is largely determined by the implant's material composition, geometric design, and surface properties. Implants with a fixed residence time, however, cannot account for the needs of individual patients, thereby imposing limits on personalization. Here, an active Fe-based implant system is reported whose biodegradation is controlled remotely and in situ. This is achieved by incorporating a galvanic cell within the implant. An external and wireless signal is used to activate the on-board electronic circuit that controls the corrosion current between the implant body and an integrated counter electrode. This configuration leads to the accelerated degradation of the implant and allows to harvest electrochemical energy that is naturally released by corrosion. In this study, the electrochemical properties of the Fe-30Mn-1C/Pt galvanic cell model system is first investigated and high-resolution X-ray microcomputed tomography is used to evaluate the galvanic degradation of stent structures. Subsequently, a centimeter-sized active implant prototype is assembled with conventional electronic components and the remotely controlled corrosion is tested in vitro. Furthermore, strategies toward the miniaturization and full biodegradability of this system are presented.

2.
ACS Appl Bio Mater ; 7(2): 839-852, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38253353

RESUMO

Implant-related infections or inflammation are one of the main reasons for implant failure. Therefore, different concepts for prevention are needed, which strongly promote the development and validation of improved material designs. Besides modifying the implant surface by, for example, antibacterial coatings (also implying drugs) for deterring or eliminating harmful bacteria, it is a highly promising strategy to prevent such implant infections by antibacterial substrate materials. In this work, the inherent antibacterial behavior of the as-cast biodegradable Fe69Mn30C1 (FeMnC) alloy against Gram-negative Pseudomonas aeruginosa and Escherichia coli as well as Gram-positive Staphylococcus aureus is presented for the first time in comparison to the clinically applied, corrosion-resistant AISI 316L stainless steel. In the second step, 3.5 wt % Cu was added to the FeMnC reference alloy, and the microbial corrosion as well as the proliferation of the investigated bacterial strains is further strongly influenced. This leads for instance to enhanced antibacterial activity of the Cu-modified FeMnC-based alloy against the very aggressive, wild-type bacteria P. aeruginosa. For clarification of the bacterial test results, additional analyses were applied regarding the microstructure and elemental distribution as well as the initial corrosion behavior of the alloys. This was electrochemically investigated by a potentiodynamic polarization test. The initial degraded surface after immersion were analyzed by glow discharge optical emission spectrometry and transmission electron microscopy combined with energy-dispersive X-ray analysis, revealing an increase of degradation due to Cu alloying. Due to their antibacterial behavior, both investigated FeMnC-based alloys in this study are attractive as a temporary implant material.


Assuntos
Ligas , Próteses e Implantes , Ligas/química , Antibacterianos/farmacologia , Antibacterianos/química
3.
Nat Electron ; 5(6): 356-366, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783488

RESUMO

Electronic devices based on two-dimensional semiconductors suffer from limited electrical stability because charge carriers originating from the semiconductors interact with defects in the surrounding insulators. In field-effect transistors, the resulting trapped charges can lead to large hysteresis and device drifts, particularly when common amorphous gate oxides (such as silicon or hafnium dioxide) are used, hindering stable circuit operation. Here, we show that device stability in graphene-based field-effect transistors with amorphous gate oxides can be improved by Fermi-level tuning. We deliberately tune the Fermi level of the channel to maximize the energy distance between the charge carriers in the channel and the defect bands in the amorphous aluminium gate oxide. Charge trapping is highly sensitive to the energetic alignment of the Fermi level of the channel with the defect band in the insulator, and thus, our approach minimizes the amount of electrically active border traps without the need to reduce the total number of traps in the insulator.

4.
Nano Lett ; 22(12): 4718-4724, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35671172

RESUMO

Transition-metal dichalcogenide monolayers and heterostructures are highly tunable material systems that provide excellent models for physical phenomena at the two-dimensional (2D) limit. While most studies to date have focused on electrons and electron-hole pairs, phonons also play essential roles. Here, we apply ultrafast electron diffraction and diffuse scattering to directly quantify, with time and momentum resolution, electron-phonon coupling (EPC) in monolayer molybdenum disulfide and phonon transport from the monolayer to a silicon nitride substrate. Optically generated hot carriers result in a profoundly anisotropic distribution of phonons in the monolayer within ∼5 ps. A quantitative comparison with ab initio ultrafast dynamics simulations reveals the essential role of dielectric screening in weakening EPC. Thermal transport from the monolayer to the substrate occurs with the phonon system far from equilibrium. While screening in 2D is known to strongly affect equilibrium properties, our findings extend this understanding to the dynamic regime.

5.
Polymers (Basel) ; 14(5)2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35267869

RESUMO

In this work, we present the fabrication and characterization of bulk-heterojunction solar cells on monolayer graphene (MLG) with nickel-grids (Ni-grid) as semitransparent conductive electrode. The electrodes showed a maximum transmittance of 90% (calculated in 300-800 nm range) and a sheet resistance down to 35 Ω/□. On these new anodes, we fabricated TCO free BHJ-SCs using PTB7 blended with PC70BM fullerene derivative as active layer. The best device exhibited a power conversion efficiency (PCE) of 4.2% in direct configuration and 3.6% in inverted configuration. The reference solar cell, realized on the ITO glass substrate, achieved a PCE of 6.1% and 6.7% in direct and inverted configuration respectively; for comparison we also tested OSCs only with simple Ni-grid as semitransparent and conductive electrode, obtaining a low PCE of 0.7%. The proposed approach to realize graphene-based electrodes could be a possible route to reduce the overall impact of the sheet resistance of this type of electrodes allowing their use in several optoelectronic devices.

6.
Proc Natl Acad Sci U S A ; 119(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35012983

RESUMO

SnSe is a layered material that currently holds the record for bulk thermoelectric efficiency. The primary determinant of this high efficiency is thought to be the anomalously low thermal conductivity resulting from strong anharmonic coupling within the phonon system. Here we show that the nature of the carrier system in SnSe is also determined by strong coupling to phonons by directly visualizing polaron formation in the material. We employ ultrafast electron diffraction and diffuse scattering to track the response of phonons in both momentum and time to the photodoping of free carriers across the bandgap, observing the bimodal and anisotropic lattice distortions that drive carrier localization. Relatively large (18.7 Å), quasi-one-dimensional (1D) polarons are formed on the 300-fs timescale with smaller (4.2 Å) 3D polarons taking an order of magnitude longer (4 ps) to form. This difference appears to be a consequence of the profoundly anisotropic electron-phonon coupling in SnSe, with strong Fröhlich coupling only to zone-center polar optical phonons. These results demonstrate a high density of polarons in SnSe at optimal doping levels. Strong electron-phonon coupling is critical to the thermoelectric performance of this benchmark material and, potentially, high performance thermoelectrics more generally.

7.
Sci Adv ; 7(20)2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33980488

RESUMO

The complex coupling between charge carriers and phonons is responsible for diverse phenomena in condensed matter. We apply ultrafast electron diffuse scattering to unravel electron-phonon coupling phenomena in 1T-TiSe2 in both momentum and time. We are able to distinguish effects due to the real part of the many-body bare electronic susceptibility, [Formula: see text], from those due to the electron-phonon coupling vertex, g q , by following the response of semimetallic (normal-phase) 1T-TiSe2 to the selective photo-doping of carriers into the electron pocket at the Fermi level. Quasi-impulsive and wave vector-specific renormalization of soft zone-boundary phonon frequencies (stiffening) is observed, followed by wave vector-independent electron-phonon equilibration. These results unravel the underlying mechanisms driving the phonon softening that is associated with the charge density wave transition at lower temperatures.

8.
Nat Commun ; 12(1): 917, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568669

RESUMO

Integrating two-dimensional (2D) materials into semiconductor manufacturing lines is essential to exploit their material properties in a wide range of application areas. However, current approaches are not compatible with high-volume manufacturing on wafer level. Here, we report a generic methodology for large-area integration of 2D materials by adhesive wafer bonding. Our approach avoids manual handling and uses equipment, processes, and materials that are readily available in large-scale semiconductor manufacturing lines. We demonstrate the transfer of CVD graphene from copper foils (100-mm diameter) and molybdenum disulfide (MoS2) from SiO2/Si chips (centimeter-sized) to silicon wafers (100-mm diameter). Furthermore, we stack graphene with CVD hexagonal boron nitride and MoS2 layers to heterostructures, and fabricate encapsulated field-effect graphene devices, with high carrier mobilities of up to [Formula: see text]. Thus, our approach is suited for backend of the line integration of 2D materials on top of integrated circuits, with potential to accelerate progress in electronics, photonics, and sensing.

9.
ACS Nano ; 14(9): 11897-11905, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32790352

RESUMO

Graphene-based photodetectors have shown responsivities up to 108 A/W and photoconductive gains up to 108 electrons per photon. These photodetectors rely on a highly absorbing layer in close proximity to graphene, which induces a shift of the graphene chemical potential upon absorption, hence modifying its channel resistance. However, due to the semimetallic nature of graphene, the readout requires dark currents of hundreds of microamperes up to milliamperes, leading to high power consumption needed for the device operation. Here, we propose a different approach for highly responsive graphene-based photodetectors with orders of magnitude lower dark-current levels. A shift of the graphene chemical potential caused by light absorption in a layer of colloidal quantum dots induces a variation of the current flowing across a metal-insulator-graphene diode structure. Owing to the low density of states of graphene near the neutrality point, the light-induced shift in chemical potential can be relatively large, dramatically changing the amount of current flowing across the insulating barrier and giving rise to an alternative gain mechanism. This readout requires dark currents of hundreds of nanoamperes up to a few microamperes, orders of magnitude lower than that of other graphene-based photodetectors, while keeping responsivities of ∼70 A/W in the infrared, almost 2 orders of magnitude higher than that of established germanium on silicon and indium gallium arsenide infrared photodetectors. This makes the device appealing for applications where high responsivity and low power consumption are required.

10.
Nanoscale Adv ; 2(9): 4179-4186, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36132766

RESUMO

It has been argued that current saturation in graphene field-effect transistors (GFETs) is needed to get optimal maximum oscillation frequency (f max). This paper investigates whether velocity saturation can help to get better current saturation and if that correlates with enhanced f max. We have fabricated 500 nm GFETs with high extrinsic f max (37 GHz), and later simulated with a drift-diffusion model augmented with the relevant factors that influence carrier velocity, namely: short-channel electrostatics, saturation velocity effect, graphene/dielectric interface traps, and self-heating effects. Crucially, the model provides microscopic details of channel parameters such as carrier concentration, drift and saturation velocities, allowing us to correlate the observed macroscopic behavior with the local magnitudes. When biasing the GFET so all carriers in the channel are of the same sign resulting in highly concentrated unipolar channel, we find that the larger the drain bias is, both closer the carrier velocity to its saturation value and the higher the f max are. However, the highest f max can be achieved at biases where there exists a depletion of carriers near source or drain. In such a situation, the highest f max is not found in the velocity saturation regime, but where carrier velocity is far below its saturated value and the contribution of the diffusion mechanism to the current is comparable to the drift mechanism. The position and magnitude of the highest f max depend on the carrier concentration and total velocity, which are interdependent and are also affected by the self-heating. Importantly, this effect was found to severely limit radio-frequency performance, reducing the highest f max from ∼60 to ∼40 GHz.

11.
Sci Rep ; 9(1): 18059, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31792254

RESUMO

We demonstrate a novel concept for operating graphene-based Hall sensors using an alternating current (AC) modulated gate voltage, which provides three important advantages compared to Hall sensors under static operation: (1) The sensor sensitivity can be doubled by utilizing both n- and p-type conductance. (2) A static magnetic field can be read out at frequencies in the kHz range, where the 1/f noise is lower compared to the static case. (3) The off-set voltage in the Hall signal can be reduced. This significantly increases the signal-to-noise ratio compared to Hall sensors without a gate electrode. A minimal detectable magnetic field Bmin down to [Formula: see text] and sensitivity up to 0.55 V/VT was found for Hall sensors working on flexible polyimide (PI) substrates. This clearly outperforms state-of-the-art flexible Hall sensors and is comparable to the values obtained by the best rigid III/V semiconductor Hall sensors.

12.
Proc Natl Acad Sci U S A ; 116(2): 450-455, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30587594

RESUMO

We combine ultrafast electron diffraction and time-resolved terahertz spectroscopy measurements to link structure and electronic transport properties during the photoinduced insulator-metal transitions in vanadium dioxide. We determine the structure of the metastable monoclinic metal phase, which exhibits antiferroelectric charge order arising from a thermally activated, orbital-selective phase transition in the electron system. The relative contribution of the photoinduced monoclinic and rutile metals to the time-dependent and pump-fluence-dependent multiphase character of the film is established, as is the respective impact of these two distinct phase transitions on the observed changes in terahertz conductivity. Our results represent an important example of how light can control the properties of strongly correlated materials and demonstrate that multimodal experiments are essential when seeking a detailed connection between ultrafast changes in optical-electronic properties and lattice structure.

13.
ACS Appl Electron Mater ; 1(9): 1909-1916, 2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-35274105

RESUMO

Two-dimensional (2D) materials, such as graphene, are seen as potential candidates for fabricating electronic devices and circuits on flexible substrates. Inks or dispersions of 2D materials can be deposited on flexible substrates by large-scale coating techniques, such as inkjet printing and spray coating. One of the main issues in coating processes is nonuniform deposition of inks, which may lead to large variations of properties across the substrates. Here, we investigate the role of surface morphology on the performance of graphene ink deposited on different paper substrates with specific top coatings. Substrates with good wetting properties result in reproducible thin films and electrical properties with low sheet resistance. The correct choice of surface morphology enables high-performance films without postdeposition annealing or treatment. Scanning terahertz time-domain spectroscopy (THz-TDS) is introduced to evaluate both the uniformity and the local conductivity of graphene inks on paper. A paper-based strain gauge is demonstrated and a variable resistor acts as an on-off switch for operating an LED. Customized surfaces can thus help in unleashing the full potential of ink-based 2D materials.

14.
Adv Struct Chem Imaging ; 4(1): 11, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30310764

RESUMO

This paper details a software ecosystem comprising three free and open-source Python packages for processing raw ultrafast electron scattering (UES) data and interactively exploring the processed data. The first package, iris, is graphical user-interface program and library for interactive exploration of UES data. Under the hood, iris makes use of npstreams, an extensions of numpy to streaming array-processing, for high-throughput parallel data reduction. Finally, we present scikit-ued, a library of reusable routines and data structures for analysis of UES data, including specialized image processing algorithms, simulation routines, and crystal structure manipulation operations. In this paper, some of the features or all three packages are highlighted, such as parallel data reduction, image registration, interactive exploration. The packages are fully tested and documented and are released under permissive licenses.

15.
Opt Express ; 25(25): 31660-31669, 2017 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-29245837

RESUMO

This work reports on the fabrication and characterization of a graphene based variable optical attenuator integrated on a photonic Si3N4 waveguide and operating at 855 nm wavelength. The variable optical attenuator utilizes the gate voltage dependent optical absorption of a graphene layer, located in the evanescent field of the waveguide. A maximum attenuation of 17 dB is obtained at -3 V gate voltages for a device length of 700 µm. The measured voltage dependent absorption was found to be in good agreement with theoretical simulations, taking into account inter- and intra-band optical conductivity of graphene. An outlook is given on possible margins for increasing the operation speed and reducing the insertion loss of the device, using an optimized layout and improved fabrication processes.

16.
Nanoscale ; 9(33): 11944-11950, 2017 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-28792041

RESUMO

Vertical metal-insulator-graphene (MIG) diodes for radio frequency (RF) power detection are realized using a scalable approach based on graphene grown by chemical vapor deposition and TiO2 as barrier material. The temperature dependent current flow through the diode can be described by thermionic emission theory taking into account a bias induced barrier lowering at the graphene TiO2 interface. The diodes show excellent figures of merit for static operation, including high on-current density of up to 28 A cm-2, high asymmetry of up to 520, strong maximum nonlinearity of up to 15, and large maximum responsivity of up to 26 V-1, outperforming state-of-the-art metal-insulator-metal and MIG diodes. RF power detection based on MIG diodes is demonstrated, showing a responsivity of 2.8 V W-1 at 2.4 GHz and 1.1 V W-1 at 49.4 GHz.

17.
Opt Express ; 24(8): 7871-8, 2016 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-27137229

RESUMO

Thermo-optical tuning of the refractive index is one of the pivotal operations performed in integrated silicon photonic circuits for thermal stabilization, compensation of fabrication tolerances, and implementation of photonic operations. Currently, heaters based on metal wires provide the temperature control in the silicon waveguide. The strong interaction of metal and light, however, necessitates a certain gap between the heater and the photonic structure to avoid significant transmission loss. Here we present a graphene heater that overcomes this constraint and enables an energy efficient tuning of the refractive index. We achieve a tuning power as low as 22 mW per free spectral range and fast response time of 3 µs, outperforming metal based waveguide heaters. Simulations support the experimental results and suggest that for graphene heaters the spacing to the silicon can be further reduced yielding the best possible energy efficiency and operation speed.

18.
Nanoscale ; 8(14): 7683-7, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-26997245

RESUMO

The excellent electronic and mechanical properties of graphene provide a perfect basis for high performance flexible electronic and sensor devices. Here, we present the fabrication and characterization of flexible graphene based Hall sensors. The Hall sensors are fabricated on 50 µm thick flexible Kapton foil using large scale graphene grown by chemical vapor deposition technique on copper foil. Voltage and current normalized sensitivities of up to 0.096 V VT(-1) and 79 V AT(-1) were measured, respectively. These values are comparable to the sensitivity of rigid silicon based Hall sensors and are the highest values reported so far for any flexible Hall sensor devices. The sensitivity of the Hall sensor shows no degradation after being bent to a minimum radius of 4 mm, which corresponds to a tensile strain of 0.6%, and after 1000 bending cycles to a radius of 5 mm.

19.
Sci Rep ; 5: 10967, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-26061415

RESUMO

Graphene has been considered as a promising material for opto-electronic devices, because of its tunable and wideband optical properties. In this work, we demonstrate electro-refractive phase modulation in graphene at wavelengths from 1530 to 1570 nm. By integrating a gated graphene layer in a silicon-waveguide based Mach-Zehnder interferometer, the key parameters of a phase modulator like change in effective refractive index, insertion loss and absorption change are extracted. These experimentally obtained values are well reproduced by simulations and design guidelines are provided to make graphene devices competitive to contemporary silicon based phase modulators for on-chip applications.

20.
Nanoscale ; 7(8): 3558-64, 2015 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-25631337

RESUMO

The sensitivity of graphene based devices to surface adsorbates and charge traps at the graphene/dielectric interface requires proper device passivation in order to operate them reproducibly under ambient conditions. Here we report on the use of atomic layer deposited aluminum oxide as passivation layer on graphene field effect devices (GFETs). We show that successful passivation produce hysteresis free DC characteristics, low doping level GFETs stable over weeks though operated and stored in ambient atmosphere. This is achieved by selecting proper seed layer prior to deposition of encapsulation layer. The passivated devices are also demonstrated to be robust towards the exposure to chemicals and heat treatments, typically used during device fabrication. Additionally, the passivation of high stability and reproducible characteristics is also shown for functional devices like integrated graphene based inverters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...