Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Astrobiology ; 23(3): 308-326, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36668995

RESUMO

Microorganisms play a role in the construction or modulation of various types of landforms. They are especially notable for forming microbially induced sedimentary structures (MISS). Such microbial structures have been considered to be among the most likely biosignatures that might be encountered on the martian surface. Twenty-nine algorithms have been tested with images taken during a laboratory experiment for testing their performance in discriminating mat cracks (MISS) from abiotic mud cracks. Among the algorithms, neural network types produced excellent predictions with similar precision of 0.99. Following that step, a convolutional neural network (CNN) approach has been tested to see whether it can conclusively detect MISS in images of rocks and sediment surfaces taken at different natural sites where present and ancient (fossil) microbial mat cracks and abiotic desiccation cracks were observed. The CNN approach showed excellent prediction of biotic and abiotic structures from the images (global precision, sensitivity, and specificity, respectively, 0.99, 0.99, and 0.97). The key areas of interest of the machine matched well with human expertise for distinguishing biotic and abiotic forms (in their geomorphological meaning). The images indicated clear differences between the abiotic and biotic situations expressed at three embedded scales: texture (size, shape, and arrangement of the grains constituting the surface of one form), form (outer shape of one form), and pattern of form arrangement (arrangement of the forms over a few square meters). The most discriminative components for biogenicity were the border of the mat cracks with their tortuous enlarged and blistered morphology more or less curved upward, sometimes with thin laminations. To apply this innovative biogeomorphological approach to the images obtained by rovers on Mars, the main physical and biological sources of variation in abiotic and biotic outcomes must now be further considered.


Assuntos
Meio Ambiente Extraterreno , Marte , Humanos , Meio Ambiente Extraterreno/química , Sedimentos Geológicos/química , Fósseis , Redes Neurais de Computação , Exobiologia/métodos
2.
Nat Plants ; 9(2): 219-227, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36702932

RESUMO

The olive tree (Olea europaea L.) is one of the species best adapted to a Mediterranean-type climate1-8. Nonetheless, the Mediterranean Basin is deemed to be a climate change 'hotspot' by the Intergovernmental Panel on Climate Change9,10 because future model projections suggest considerable warming and drying11,12. Within this context, new environmental challenges will arise in the coming decades, which will both weaken and threaten olive-growing areas, leading to a loss of productivity and changes in fruit and oil quality13-15. Olive growing, a core of the Mediterranean economy, might soon be under stress. To probe the link between climate and olive trees, we here report 5,400 years of olive tree dynamics from the ancient city of Tyre, Lebanon. We show that optimal fruiting scales closely with temperature. Present-day and palaeo data define an optimal annual average temperature of 16.9 ± 0.3 °C for olive flowering that has existed at least since the Neolithic period. According to our projections, during the second half of the twenty-first century, temperature increases in Lebanon will have detrimental consequences on olive tree growth and olive oil production, especially in the country's southern regions, which will become too hot for optimal flowering and fruiting. These data provide a template to understand present and future thresholds of olive production under climate change.


Assuntos
Adaptação Fisiológica , Mudança Climática , Azeite de Oliva , Temperatura
3.
Viruses ; 14(7)2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35891361

RESUMO

Xanthomonas arboricola pv. juglandis (hereafter X. juglandis) is the etiological agent of walnut blight, the most important bacterial disease affecting walnut production worldwide. Currently, the disease is treated mainly with copper-derived compounds (e.g., CuSO4) despite the evidence of genetic resistance in these strains. Regarding the effectiveness and sustainability, the use of a bacteriophage appears to be a biocontrol alternative to reduce X. juglandis load and symptomatology of walnut blight. Here, the phages f20-Xaj, f29-Xaj, and f30-Xaj were characterized, and their effectiveness in walnut orchards against walnut blight was determined. These bacteriophages showed a specific lytic infection in X. juglandis strains isolated from Chile and France. Phylogenetic analysis of the complete genome of f20-Xaj and f30-Xaj indicates that these phages belong to the Pradovirus genus. In the field, the cocktail of these bacteriophages showed similar effectivity to CuSO4 in the reduction of incidence and severity in walnut tissue. Moreover, the bacterial load of X. juglandis was significantly reduced in the presence of bacteriophages in contrast to a CuSO4 treatment. These results show that the use of bacteriophages can be an alternative to combat the symptoms of walnut blight caused by X. juglandis.


Assuntos
Bacteriófagos , Juglans , Xanthomonas , Bacteriófagos/genética , Juglans/microbiologia , Filogenia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle
4.
Astrobiology ; 19(10): 1279-1291, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31584307

RESUMO

Geological evidence shows that life on Earth evolved in line with major concomitant changes in Earth surface processes and landforms. Biogeomorphological characteristics, especially those involving microorganisms, are potentially important facets of biosignatures on Mars and are generating increasing interest in astrobiology. Using Earth as an analog provides reasons to suspect that past or present life on Mars could have resulted in recognizable biogenic landforms. Here, we discuss the potential for, and limitations of, a biogeomorphological approach to identifying the subsets of landforms that are modulated or created through biological processes and thus present signatures of life on Mars. Subsets especially involving microorganisms that are potentially important facets of biosignatures on Mars are proposed: (i) weathering features, biocrusts, patinas, and varnishes; (ii) microbialites and microbially induced sedimentary structures (MISS); (iii) bioaccumulations of skeletal remains; (iv) degassing landforms; (v) cryoconites; (vi) self-organized patterns; (vii) unclassified non-analog landforms. We propose a biogeomorphological frequency histogram approach to identify anomalies/modulations in landform properties. Such detection of anomalies/modulations will help track a biotic origin and lead to the development of an integrative multiproxy and multiscale approach combining morphological, structural, textural, and geochemical expertise. This perspective can help guide the choice of investigation sites for future missions and the types and scales of observations to be made by orbiters and rovers.


Assuntos
Exobiologia , Meio Ambiente Extraterreno , Marte , Bactérias/metabolismo , Sedimentos Geológicos/química , Metano/análise , Modelos Teóricos , Tempo (Meteorologia)
5.
Sci Rep ; 6: 25197, 2016 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-27126207

RESUMO

Storm surges, leading to catastrophic coastal flooding, are amongst the most feared natural hazards due to the high population densities and economic importance of littoral areas. Using the Central Mediterranean Sea as a model system, we provide strong evidence for enhanced periods of storminess leading to coastal flooding during the last 4500 years. We show that long-term correlations can be drawn between storminess and solar activity, acting on cycles of around 2200-yr and 230-yr. We also find that phases of increased storms and coastal flooding have impacted upon mid- to late Holocene agricultural activity on the Adriatic coast. Based on the general trend observed during the second half of the 20(th) century, climate models are predicting a weakening of Mediterranean storminess. By contrast, our new data suggest that a decrease in solar activity will increase and intensify the risk of frequent flooding in coastal areas.

6.
PLoS One ; 9(7): e102090, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25003703

RESUMO

Although human activity is considered to be a major driving force affecting the distribution and dynamics of Mediterranean ecosystems, the full consequences of projected climate variability and relative sea-level changes on fragile coastal ecosystems for the next century are still unknown. It is unclear how these waterfront ecosystems can be sustained, as well as the services they provide, when relative sea-level rise and global warming are expected to exert even greater pressures in the near future (drought, habitat degradation and accelerated shoreline retreat). Haifa Bay, northern Israel, has recorded a landward sea invasion, with a maximum sea penetration 4,000 years ago, during an important period of urban development and climate instability. Here, we examine the cumulative pressure of climate shifts and relative sea-level changes in order to investigate the patterns and mechanisms behind forest replacement by an open-steppe. We provide a first comprehensive and integrative study for the southern Levant that shows that (i) human impact, through urbanization, has been the main driver behind ecological erosion in the past 4,000 years; (ii) climate pressures have reinforced this impact; and (iii) local coastal changes have played a decisive role in eroding ecosystem resilience. These three parameters, which have closely interacted during the last 4,000 years in Haifa Bay, clearly indicate that for an efficient management of the coastal habitats, anthropogenic pressures linked to urban development must be reduced in order to mitigate the predicted effects of Global Change.


Assuntos
Ecossistema , Conservação dos Recursos Naturais , Sedimentos Geológicos/química , Aquecimento Global , Israel , Mar Mediterrâneo , Pólen/química , Urbanização
7.
Sci Rep ; 3: 3540, 2013 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-24345820

RESUMO

A common belief is that, unlike today, ancient urban areas developed in a sustainable way within the environmental limits of local natural resources and the ecosystem's capacity to respond. This long-held paradigm is based on a weak knowledge of the processes underpinning the emergence of urban life and the rise of an urban-adapted environment in and beyond city boundaries. Here, we report a 6000-year record of environmental changes around the port city of Akko (Acre), Israel, to analyse ecological processes and patterns stemming from the emergence and growth of urban life. We show that early urban development deeply transformed pre-existing ecosystems, swiftly leading to an urban environment already governed by its own ecological rules and this, since the emergence of the cities.


Assuntos
Ecossistema , Meio Ambiente , Crescimento Demográfico , População Urbana/história , Urbanização , Conservação dos Recursos Naturais , Demografia , História Antiga , Israel , Tempo (Meteorologia)
8.
PLoS One ; 8(8): e71004, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23967146

RESUMO

The Late Bronze Age world of the Eastern Mediterranean, a rich linkage of Aegean, Egyptian, Syro-Palestinian, and Hittite civilizations, collapsed famously 3200 years ago and has remained one of the mysteries of the ancient world since the event's retrieval began in the late 19(th) century AD/CE. Iconic Egyptian bas-reliefs and graphic hieroglyphic and cuneiform texts portray the proximate cause of the collapse as the invasions of the "Peoples-of-the-Sea" at the Nile Delta, the Turkish coast, and down into the heartlands of Syria and Palestine where armies clashed, famine-ravaged cities abandoned, and countrysides depopulated. Here we report palaeoclimate data from Cyprus for the Late Bronze Age crisis, alongside a radiocarbon-based chronology integrating both archaeological and palaeoclimate proxies, which reveal the effects of abrupt climate change-driven famine and causal linkage with the Sea People invasions in Cyprus and Syria. The statistical analysis of proximate and ultimate features of the sequential collapse reveals the relationships of climate-driven famine, sea-borne-invasion, region-wide warfare, and politico-economic collapse, in whose wake new societies and new ideologies were created.


Assuntos
Civilização , Meio Ambiente , História Antiga , Arqueologia , Clima , Chipre , Oceanos e Mares
9.
PLoS One ; 6(6): e20232, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21687714

RESUMO

The 13(th) century BC witnessed the zenith of the Aegean and Eastern Mediterranean civilizations which declined at the end of the Bronze Age, ∼3200 years ago. Weakening of this ancient flourishing Mediterranean world shifted the political and economic centres of gravity away from the Levant towards Classical Greece and Rome, and led, in the long term, to the emergence of the modern western civilizations. Textual evidence from cuneiform tablets and Egyptian reliefs from the New Kingdom relate that seafaring tribes, the Sea Peoples, were the final catalyst that put the fall of cities and states in motion. However, the lack of a stratified radiocarbon-based archaeology for the Sea People event has led to a floating historical chronology derived from a variety of sources spanning dispersed areas. Here, we report a stratified radiocarbon-based archaeology with anchor points in ancient epigraphic-literary sources, Hittite-Levantine-Egyptian kings and astronomical observations to precisely date the Sea People event. By confronting historical and science-based archaeology, we establish an absolute age range of 1192-1190 BC for terminal destructions and cultural collapse in the northern Levant. This radiocarbon-based archaeology has far-reaching implications for the wider Mediterranean, where an elaborate network of international relations and commercial activities are intertwined with the history of civilizations.


Assuntos
Grupos Populacionais , Datação Radiométrica/métodos , Redação , Humanos
10.
Oecologia ; 165(2): 369-76, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20683730

RESUMO

Myrmecophytic symbioses are widespread in tropical ecosystems and their diversity makes them useful tools for understanding the origin and evolution of mutualisms. Obligate ant-plants, or myrmecophytes, provide a nesting place, and, often, food to a limited number of plant-ant species. In exchange, plant-ants protect their host plants from herbivores, competitors and pathogens, and can provide them with nutrients. Although most studies to date have highlighted a similar global pattern of interactions in these systems, little is known about the temporal structuring and dynamics of most of these associations. In this study we focused on the association between the understory myrmecophyte Hirtella physophora (Chrysobalanaceae) and its obligate ant partner Allomerus decemarticulatus (Myrmicinae). An examination of the life histories and growth rates of both partners demonstrated that this plant species has a much longer lifespan (up to about 350 years) than its associated ant colonies (up to about 21 years). The size of the ant colonies and their reproductive success were strongly limited by the available nesting space provided by the host plants. Moreover, the resident ants positively affected the vegetative growth of their host plant, but had a negative effect on its reproduction by reducing the number of flowers and fruits by more than 50%. Altogether our results are important to understanding the evolutionary dynamics of ant-plant symbioses. The highly specialized interaction between long-lived plants and ants with a shorter lifespan produces an asymmetry in the evolutionary rates of the interaction which, in return, can affect the degree to which the interests of the two partners converge.


Assuntos
Formigas/fisiologia , Evolução Biológica , Chrysobalanaceae/fisiologia , Ecossistema , Simbiose , Animais , Comportamento Alimentar/fisiologia , Comportamento de Nidação/fisiologia , Reprodução , Especificidade da Espécie , Fatores de Tempo
11.
C R Biol ; 327(4): 381-8, 2004 Apr.
Artigo em Francês | MEDLINE | ID: mdl-15212370

RESUMO

We present the pollen analysis of a new sedimentary sequence taken at La Pouretère ( 1720 m), in the mountain vegetation zone of the Marcadau valley (central Pyrenees). The Lateglacial and Holocene chronology is supported by six 14C-dating results. The complementary analysis of some vegetal macroremains, stomata, pollen-clusters and the use of pollen influx allows us to elucidate the dynamic of mountain species such as Pinus and specially Abies but also to infer the unusual part played by Betula at the beginning of the Postglacial period.


Assuntos
Fósseis , Pólen , França
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...