Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(8): e1012495, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39178317

RESUMO

There is a critical gap in knowledge about how Gram-negative bacterial pathogens, using survival strategies developed for other niches, cause lethal bacteremia. Facultative anaerobic species of the Enterobacterales order are the most common cause of Gram-negative bacteremia, including Escherichia coli, Klebsiella pneumoniae, Serratia marcescens, Citrobacter freundii, and Enterobacter hormaechei. Bacteremia often leads to sepsis, a life-threatening organ dysfunction resulting from unregulated immune responses to infection. Despite a lack of specialization for this host environment, Gram-negative pathogens cause nearly half of bacteremia cases annually. Based on our existing Tn-Seq fitness factor data from a murine model of bacteremia combined with comparative genomics of the five Enterobacterales species above, we prioritized 18 conserved fitness genes or operons for further characterization. Mutants were constructed for all genes in all five species. Each mutant was used to cochallenge C57BL/6 mice via tail vein injection along with each respective wild-type strain to determine competitive indices for each fitness gene. Five fitness factor genes, when mutated, attenuated mutants in four or five species in the spleen and liver (tatC, ruvA, gmhB, wzxE, arcA). Five additional fitness factor genes or operons were validated as outcompeted by wild-type in three, four, or five bacterial species in the spleen (xerC, prc, apaGH, atpG, aroC). Overall, 17 of 18 fitness factor mutants were attenuated in at least one species in the spleen or liver. Together, these findings allow for the development of a model of bacteremia pathogenesis that may include future targets of therapy against bloodstream infections.


Assuntos
Bacteriemia , Genoma Bacteriano , Animais , Bacteriemia/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/genética , Infecções por Enterobacteriaceae/imunologia , Enterobacteriaceae/genética , Enterobacteriaceae/patogenicidade , Proteínas de Bactérias/genética , Feminino , Modelos Animais de Doenças
2.
Mol Microbiol ; 113(1): 153-172, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31680352

RESUMO

Acinetobacter baumannii infects a wide range of anatomic sites including the respiratory tract and bloodstream. Despite its clinical importance, little is known about the molecular basis of A. baumannii pathogenesis. We previously identified the UDP-N-acetyl-d-galactosaminuronic acid (UDP-GalNAcA) biosynthesis genes, gna-gne2, as being critical for survival in vivo. Herein, we demonstrate that Gna-Gne2 are part of a complex network connecting in vivo fitness, cell envelope homeostasis and resistance to antibiotics. The ∆gna-gne2 mutant exhibits a severe fitness defect during bloodstream infection. Capsule production is abolished in the mutant strain, which is concomitant with its inability to survive in human serum. In addition, the ∆gna-gne2 mutant was more susceptible to vancomycin and unable to grow on MacConkey plates, indicating an alteration in cell envelope integrity. Analysis of lipid A by mass spectrometry showed that the hexa- and hepta-acylated species were affected in the gna-gne2 mutant. Finally, the ∆gna-gne2 mutant was more susceptible to several classes of antibiotics. Together, this study demonstrates the importance of UDP-GalNAcA in the pathobiology of A. baumannii. By interrupting its biosynthesis, we showed that this molecule plays a critical role in capsule biosynthesis and maintaining the cell envelope homeostasis.


Assuntos
Acinetobacter baumannii/genética , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla/genética , Ácidos Hexurônicos/metabolismo , Infecções por Acinetobacter/microbiologia , Animais , Feminino , Genes Bacterianos , Camundongos , Camundongos Endogâmicos CBA
3.
Infect Immun ; 88(3)2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31843961

RESUMO

Staphylococcus aureus is a significant human pathogen due to its capacity to cause a multitude of diseases. As such, S. aureus efficiently pillages vital nutrients from the host; however, the molecular mechanisms that support sulfur acquisition during infection have not been established. One of the most abundant extracellular sulfur-containing metabolites within the host is cysteine, which acts as the major redox buffer in the blood by transitioning between reduced and oxidized (cystine) forms. We therefore hypothesized that S. aureus acquires host-derived cysteine and cystine as sources of nutrient sulfur during systemic infection. To test this hypothesis, we used the toxic cystine analogue selenocystine to initially characterize S. aureus homologues of the Bacillus subtilis cystine transporters TcyABC and TcyP. We found that genetic inactivation of both TcyA and TcyP induced selenocystine resistance. The double mutant also failed to proliferate in medium supplemented with cystine, cysteine, or N-acetyl cysteine as the sole sulfur source. However, only TcyABC was necessary for proliferation in defined medium containing homocystine as the sulfur source. Using a murine model of systemic infection, we observed tcyP-dependent competitive defects in the liver and heart, indicating that this sulfur acquisition strategy supports proliferation of S. aureus in these organs. Phylogenetic analyses identified TcyP homologues in many pathogenic species, implying that this sulfur procurement strategy is conserved. In total, this study is the first to experimentally validate sulfur acquisition systems in S. aureus and establish their importance during pathogenesis.


Assuntos
Cistina/metabolismo , Proteínas de Membrana Transportadoras/fisiologia , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus/fisiologia , Enxofre/metabolismo , Animais , Camundongos
4.
Mol Microbiol ; 109(6): 745-762, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29884996

RESUMO

Acinetobacter baumannii has emerged as a leading nosocomial pathogen, infecting a wide range of anatomic sites including the respiratory tract and the bloodstream. In addition to being multi-drug resistant, little is known about the molecular basis of A. baumannii pathogenesis. To better understand A. baumannii virulence, a combination of a transposon-sequencing (TraDIS) screen and the neutropenic mouse model of bacteremia was used to identify the full set of fitness genes required during bloodstream infection. The lytic transglycosylase MltB was identified as a critical fitness factor. MltB cleaves the MurNAc-GlcNAc bond of peptidoglycan, which leads to cell wall remodeling. Here we show that MltB is part of a complex network connecting resistance to stresses, membrane homeostasis, biogenesis of pili and in vivo fitness. Indeed, inactivation of mltB not only impaired resistance to serum complement, cationic antimicrobial peptides and oxygen species, but also altered the cell envelope integrity, activated the envelope stress response, drastically reduced the number of pili at the cell surface and finally, significantly decreased colonization of both the bloodstream and the respiratory tract.


Assuntos
Infecções por Acinetobacter/patologia , Acinetobacter baumannii/genética , Acinetobacter baumannii/patogenicidade , Membrana Celular/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/farmacologia , Proteínas do Sistema Complemento/imunologia , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , Camundongos Endogâmicos CBA , Ácidos Murâmicos/metabolismo , Peptidoglicano/metabolismo , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA