Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 24(11): 7164, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35260872

RESUMO

Correction for 'The molecular structure of the surface of water-ethanol mixtures' by Johannes Kirschner et al., Phys. Chem. Chem. Phys., 2021, 23, 11568-11578, DOI: 10.1039/D0CP06387H.

2.
Phys Chem Chem Phys ; 23(19): 11568-11578, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-33977931

RESUMO

Mixtures of water and alcohol exhibit an excess surface concentration of alcohol as a result of the amphiphilic nature of the alcohol molecule, which has important consequences for the physico-chemical properties of water-alcohol mixtures. Here we use a combination of intensity vibrational sum-frequency generation (VSFG) spectroscopy, heterodyne-detected VSFG (HD-VSFG), and core-level photoelectron spectroscopy (PES) to investigate the molecular properties of water-ethanol mixtures at the air-liquid interface. We find that increasing the ethanol concentration up to a molar fraction (MF) of 0.1 leads to a steep increase of the surface density of the ethanol molecules, and an increased ordering of the ethanol molecules at the surface. When the ethanol concentration is further increased, the surface density of ethanol remains more or less constant, while the orientation of the ethanol molecules becomes increasingly disordered. The used techniques of PES and VSFG provide complementary information on the density and orientation of ethanol molecules at the surface of water, thus providing new information on the molecular-scale properties of the surface of water-alcohol mixtures over a wide range of compositions. This information is invaluable in understanding the chemical and physical properties of water-alcohol mixtures.

3.
Phys Rev Lett ; 120(21): 216001, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29883173

RESUMO

We find that the reduction in dielectric response (depolarization) of water caused by solvated ions is different for H_{2}O and D_{2}O. This isotope dependence allows us to reliably determine the kinetic contribution to the depolarization, which is found to be significantly smaller than predicted by existing theory. The discrepancy can be explained from a reduced hydrogen-bond cooperativity in the solvation shell: we obtain quantitative agreement between theory and experiment by reducing the Kirkwood correlation factor of the solvating water from 2.7 (the bulk value) to ∼1.6 for NaCl and ∼1 (corresponding to completely uncorrelated motion of water molecules) for CsCl.

5.
J Chem Phys ; 146(13): 131101, 2017 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-28390345

RESUMO

We investigate proton-charge mobility in nanoscopic water droplets with tuneable size. We find that the diffusion of confined proton charges causes a dielectric relaxation process with a maximum-loss frequency determined by the diffusion constant. In volumes less than ∼5 nm in diameter, proton-charge diffusion slows down significantly with decreasing size: for diameters <1 nm, the diffusion constant is about 100 times smaller than in bulk water. The low mobility probably results from the more rigid hydrogen-bond network of nanoconfined water, since proton-charge mobility in water relies on collective hydrogen-bond rearrangements.

6.
J Phys Chem B ; 119(10): 4033-40, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25700136

RESUMO

The acid-base speciation of surface-active carboxylate ions in the surface region of aqueous solutions was studied with synchrotron-radiation-based photoelectron spectroscopy. The protonated form was found at an extraordinarily large fraction compared to that expected from the bulk pH. When adding salts containing the weak acid NH4(+) to the solution, the fraction of the acidic form at the surface increases, and to a much greater extent than expected from the bulk pH of the solution. We show that ammonium ions also are overrepresented in the surface region, and propose that the interaction between the surface-active anionic carboxylates and cationic ammonium ions creates a carboxylate-ammonium bilayer close to the surface, which increases the probability of the protonation of the carboxylate ions. By comparing the situation when a salt of the less volatile amine diethanolamine is used, we also show that the observed evaporation of ammonia that occurs after such an event only affects the equilibrium marginally.

7.
Phys Chem Chem Phys ; 17(1): 298-306, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25138965

RESUMO

The amphiphilic osmolyte trimethylamine-N-oxide (TMAO) is commonly found in natural organisms, where it counteracts biochemical stress associated with urea in aqueous environments. Despite the important role of TMAO as osmoprotectant, the mechanism behind TMAO's action has remained elusive. Here, we study the interaction between urea, TMAO, and water in solution using broadband (100 MHz-1.6 THz) dielectric spectroscopy. We find that the previously reported tight hydrogen bonds between 3 water molecules and the hydrophilic amine oxide group of TMAO, remain intact at all investigated concentrations of urea, showing that no significant hydrogen bonding occurs between the two co-solutes. Despite the absence of direct TMAO-urea interactions, the solute reorientation times of urea and TMAO show an anomalous nonlinear increase with concentration, for ternary mixtures containing equal amounts of TMAO and urea. The nonlinear increase of the reorientation correlates with changes in the viscosity, showing that the combination of TMAO and urea cooperatively enhances the hydrogen-bond structure of the ternary solutions. This nonlinear increase is indicative of water mediated interaction between the two solutes and is not observed if urea is combined with other amphiphilic solutes.


Assuntos
Metilaminas/química , Ureia/química , Água/química , Espectroscopia Dielétrica , Ligação de Hidrogênio , Modelos Moleculares
8.
J Chem Phys ; 141(18): 18C535, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25399200

RESUMO

We study the reorientation dynamics of liquid water confined in nanometer-sized reverse micelles of spherical and cylindrical shape. The size and shape of the micelles are characterized in detail using small-angle x-ray scattering, and the reorientation dynamics of the water within the micelles is investigated using GHz dielectric relaxation spectroscopy and polarization-resolved infrared pump-probe spectroscopy on the OD-stretch mode of dilute HDO:H2O mixtures. We find that the GHz dielectric response of both the spherical and cylindrical reverse micelles can be well described as a sum of contributions from the surfactant, the water at the inner surface of the reversed micelles, and the water in the core of the micelles. The Debye relaxation time of the core water increases from the bulk value τ(H2O) of 8.2 ± 0.1 ps for the largest reverse micelles with a radius of 3.2 nm to 16.0 ± 0.4 ps for the smallest micelles with a radius of 0.7 nm. For the nano-spheres the dielectric response of the water is approximately ∼6 times smaller than expected from the water volume fraction and the bulk dielectric relaxation of water. We find that the dielectric response of nano-spheres is more attenuated than that of nano-tubes of identical composition (water-surfactant ratio), whereas the reorientation dynamics of the water hydroxyl groups is identical for the two geometries. We attribute the attenuation of the dielectric response compared to bulk water to a local anti-parallel ordering of the molecular dipole moments. The difference in attenuation between nano-spheres and nano-cylinders indicates that the anti-parallel ordering of the water dipoles is more pronounced upon spherical than upon cylindrical nanoconfinement.


Assuntos
Micelas , Nanosferas/química , Nanotubos/química , Tensoativos/química , Água/química , Espectroscopia Dielétrica
9.
J Am Chem Soc ; 136(37): 12808-11, 2014 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-25149068

RESUMO

We report on a strong nonadditive effect of protons and other cations on the structural dynamics of liquid water, which is revealed using dielectric relaxation spectroscopy in the frequency range of 1-50 GHz. For pure acid solutions, protons are known to have a strong structuring effect on water, leading to a pronounced decrease of the dielectric response. We observe that this structuring is reduced when protons are cosolvated with salts. This reduction is exclusively observed for combinations of protons with other ions; for all studied solutions of cosolvated salts, the effect on the structural dynamics of water is observed to be purely additive, even up to high concentrations. We derive an empirical model that quantitatively describes the nonadditive effect of cosolvated protons and cations. We argue that the effect can be explained from the special character of the proton in water and that Coulomb fields exerted by other cations, in particular doubly charged cations like Mg(2+)aq and Ca(2+)aq, induce a localization of the H(+)aq hydration structures.

10.
J Phys Chem B ; 118(25): 7119-27, 2014 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-24871810

RESUMO

Through the combination of surface sensitive photoelectron spectroscopy and molecular dynamics simulation, the relative surface propensities of guanidinium and ammonium ions in aqueous solution are characterized. The fact that the N 1s binding energies differ between these two species was exploited to monitor their relative surface concentration through their respective photoemission intensities. Aqueous solutions of ammonium and guanidinium chloride, and mixtures of these salts, have been studied in a wide concentration range, and it is found that the guanidinium ion has a greater propensity to reside at the aqueous surface than the ammonium ion. A large portion of the relative excess of guanidinium ions in the surface region of the mixed solutions can be explained by replacement of ammonium ions by guanidinium ions in the surface region in combination with a strong salting-out effect of guanidinium by ammonium ions at increased concentrations. This interpretation is supported by molecular dynamics simulations, which reproduce the experimental trends very well. The simulations suggest that the relatively higher surface propensity of guanidinium compared with ammonium ions is due to the ease of dehydration of the faces of the almost planar guanidinium ion, which allows it to approach the water-vapor interface oriented parallel to it.


Assuntos
Compostos de Amônio/química , Guanidina/química , Simulação de Dinâmica Molecular , Gases/química , Íons/química , Espectroscopia Fotoeletrônica , Sais/química , Propriedades de Superfície , Água/química
11.
J Phys Chem B ; 118(11): 3164-74, 2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24564292

RESUMO

We present synchrotron-based I4d photoelectron spectroscopy experiments of solutions from LiI and LiI3 in water, ethanol, and acetonitrile. The experimentally determined solvent-induced binding energy shifts (SIBES) for the monatomic I(­) anion are compared to predictions from simple Born theory, PCM calculations, as well as multiconfigurational quantum chemical spectral calculations from geometries obtained through molecular dynamics of solvated clusters. We show that the SIBES for I(­) explicitly depend on the details of the hydrogen bonding configurations of the solvent to the I(­) and that static continuum models such as the Born model cannot capture the trends in the SIBES observed both in experiments and in higher-level calculations. To extend the discussion to more complex polyatomic anions, we also performed experiments on I3(­) and I(­)/I3(­) mixtures in different solvents and the results are analyzed in the perspective of SIBES. The experimental SIBES values indicate that the solvation effects even for such similar anions as I(­) and I3(­) can be rather different in nature.

12.
Phys Chem Chem Phys ; 15(46): 20189-96, 2013 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-24162078

RESUMO

The molecular and electronic structures of aqueous I3(-) and I(-) ions have been investigated through ab initio molecular dynamics (MD) simulations and photoelectron (PE) spectroscopy of the iodine 4d core levels. Against the background of the theoretical simulations, data from our I4d PE measurements are shown to contain evidence of coupled solute-solvent dynamics. The MD simulations reveal large amplitude fluctuations in the I-I distances, which couple to the collective rearrangement of the hydrogen bonding network around the I3(-) ion. Due to the high polarizability of the I3(-) ion, the asymmetric I-I vibration reaches partially dissociated configurations, for which the electronic structure resembles that of I2 + I(-). The charge localization in the I3(-) ion is found to be moderated by hydrogen-bonding. As seen in the PE spectrum, these soft molecular vibrations are important for the electronic properties of the I3(-) ion in solution and may play an important role in its electrochemical function.

13.
Nat Chem ; 5(7): 590-6, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23787749

RESUMO

To understand the yield and patterns of damage in aqueous condensed matter, including biological systems, it is essential to identify the initial products subsequent to the interaction of high-energy radiation with liquid water. Until now, the observation of several fast reactions induced by energetic particles in water was not possible on their characteristic timescales. Therefore, some of the reaction intermediates involved, particularly those that require nuclear motion, were not considered when describing radiation chemistry. Here, through a combined experimental and theoretical study, we elucidate the ultrafast proton dynamics in the first few femtoseconds after X-ray core-level ionization of liquid water. We show through isotope analysis of the Auger spectra that proton-transfer dynamics occur on the same timescale as electron autoionization. Proton transfer leads to the formation of a Zundel-type intermediate [HO*···H···H2O](+), which further ionizes to form a so-far unnoticed type of dicationic charge-separated species with high internal energy. We call the process proton-transfer mediated charge separation.


Assuntos
Cátions Bivalentes/química , Água/química , Raios X , Prótons
14.
J Phys Chem B ; 116(43): 13017-23, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22934651

RESUMO

In this work, we provide a detailed microscopic picture of the behavior of benzoic acid at the aqueous solution/vapor interface in its neutral as well as in its dissociated form (benzoate). This is achieved through a combination of highly surface-sensitive X-ray photoelectron spectroscopy experiments and fully atomistic molecular simulations. We show that significant changes occur in the interface behavior of the neutral acid upon release of the proton. The benzoic acid molecules are found to be strongly adsorbed at the interface layer with the planes of the aromatic rings oriented almost parallel to the water surface. In contrast, in the benzoate form, the carboxylate group shows a sinker-like behavior while the aromatic ring acts as a buoy, oriented nearly perpendicular to the surface. Furthermore, a significant fraction of the molecular ions move from the interface layer into the bulk of the solution. We rationalize these findings in terms of the very different hydration properties of the carboxylic group in the two charge states. The molecule has an amphiphilic nature, and the deprotonation thus changes the hydrophobic/hydrophilic balance between the nonpolar aromatic and the polar carboxylic parts of the molecule. That, consequently, leads to a pronounced reorientation and depletion of the molecules at the interface.


Assuntos
Ácido Benzoico/química , Simulação de Dinâmica Molecular , Espectroscopia Fotoeletrônica , Água/química , Soluções , Volatilização
15.
J Am Chem Soc ; 133(34): 13489-95, 2011 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-21755940

RESUMO

We study how the ultrafast intermolecular hopping of electrons excited from the water O1s core level into unoccupied orbitals depends on the local molecular environment in liquid water. Our probe is the resonant Auger decay of the water O1s core hole (lifetime ∼3.6 fs), by which we show that the electron-hopping rate can be significantly reduced when a first-shell water molecule is replaced by an atomic ion. Decays resulting from excitations at the O1s post-edge feature (∼540 eV) of 6 m LiBr and 3 m MgBr(2) aqueous solutions reveal electron-hopping times of ∼1.5 and 1.9 fs, respectively; the latter represents a 4-fold increase compared to the corresponding value in neat water. The slower electron-hopping in electrolytes, which shows a strong dependence on the charge of the cations, can be explained by ion-induced reduction of water-water orbital mixing. Density functional theory electronic structure calculations of solvation geometries obtained from molecular dynamics simulations reveal that this phenomenon largely arises from electrostatic perturbations of the solvating water molecules by the solvated ions. Our results demonstrate that it is possible to deliberately manipulate the rate of charge transfer via electron-hopping in aqueous media.


Assuntos
Cátions/química , Elétrons , Água/química , Simulação de Dinâmica Molecular
16.
J Am Chem Soc ; 133(34): 13430-6, 2011 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-21797195

RESUMO

Auger electron spectroscopy combined with theoretical calculations has been applied to investigate the decay of the Ca 2p core hole of aqueous Ca(2+). Beyond the localized two-hole final states on the calcium ion, originating from a normal Auger process, we have further identified the final states delocalized between the calcium ion and its water surroundings and produced by core level intermolecular Coulombic decay (ICD) processes. By applying the core-hole clock method, the time scale of the core level ICD was determined to be 33 ± 1 fs for the 2p core hole of the aqueous Ca(2+). The comparison of this time constant to those associated with the aqueous K(+), Na(+), Mg(2+), and Al(3+) ions reveals differences of 1 and up to 2 orders of magnitude. Such large variations in the characteristic time scales of the core level ICD processes is qualitatively explained by different internal decay mechanisms in different ions as well as by different ion-solvent distances and interactions.

17.
Phys Chem Chem Phys ; 13(26): 12261-7, 2011 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-21633751

RESUMO

We report highly surface sensitive core-level photoelectron spectra of small carboxylic acids (formic, acetic and butyric acid) and their respective carboxylate conjugate base forms (formate, acetate and butyrate) in aqueous solution. The relative surface propensity of the carboxylic acids and carboxylates is obtained by monitoring their respective C1s signal intensities from a solution in which their bulk concentrations are equal. All the acids are found to be enriched at the surface relative to the corresponding carboxylates. By monitoring the PE signals of acetic acid and acetate as a function of total concentration, we find that the protonation of acetic acid is nearly complete in the interface layer. This is in agreement with literature surface tension data, from which it is inferred that the acids are enriched at the surface while (sodium) formate and acetate, but not butyrate, are depleted. For butyric acid, we conclude that the carboxylate form co-exists with the acid in the interface layer. The free energy cost of replacing an adsorbed butyric acid molecule with a butyrate ion at 1.0 M concentration is estimated to be >5 kJ mol(-1). By comparing concentration dependent surface excess data with the evolution of the corresponding photoemission signals it is furthermore possible to draw conclusions about how the distribution of molecules that contribute to the excess is altered with bulk concentration.

18.
J Am Chem Soc ; 133(9): 3120-30, 2011 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-21319819

RESUMO

The local electronic structure of glycine in neutral, basic, and acidic aqueous solution is studied experimentally by X-ray photoelectron spectroscopy and theoretically by molecular dynamics simulations accompanied by first-principle electronic structure and spectrum calculations. Measured and computed nitrogen and carbon 1s binding energies are assigned to different local atomic environments, which are shown to be sensitive to the protonation/deprotonation of the amino and carboxyl functional groups at different pH values. We report the first accurate computation of core-level chemical shifts of an aqueous solute in various protonation states and explicitly show how the distributions of photoelectron binding energies (core-level peak widths) are related to the details of the hydrogen bond configurations, i.e. the geometries of the water solvation shell and the associated electronic screening. The comparison between the experiments and calculations further enables the separation of protonation-induced (covalent) and solvent-induced (electrostatic) screening contributions to the chemical shifts in the aqueous phase. The present core-level line shape analysis facilitates an accurate interpretation of photoelectron spectra from larger biomolecular solutes than glycine.


Assuntos
Elétrons , Glicina/química , Concentração de Íons de Hidrogênio , Simulação de Dinâmica Molecular , Espectroscopia Fotoeletrônica , Água/química
19.
Phys Chem Chem Phys ; 12(36): 10693-700, 2010 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-20617257

RESUMO

We investigate various mechanisms contributing to the surface ion distributions in simple and mixed aqueous alkali-halide solutions depending on the total salt concentration, using a combination of photoelectron spectroscopy and molecular dynamics simulations. In simple solutions, the surface enhancement of large polarizable anions is reduced with increasing concentration. In the case of a NaBr/NaCl mixed aqueous solution, with bromide as the minority component, the situation is more complex. While the total anion/cation charge separation is similarly reduced with increasing salt content, this alone does not uniquely determine the ion distribution due to the co-existence of two different anions, Br(-) and Cl(-). We show that bromide is selectively surface enhanced at higher concentrations, despite the fact that the total anion surface enhancement is reduced. This phenomenon, which can be viewed as "salting out" of bromide by NaCl might have consequences for our understanding of the surface structure of mixed aqueous solutions subjected to concentration increase due to dehydration, such as seawater-born aerosols.


Assuntos
Eletrólitos/química , Água/química , Álcalis/química , Halogênios/química , Simulação de Dinâmica Molecular , Propriedades de Superfície
20.
J Chem Phys ; 131(12): 124706, 2009 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-19791911

RESUMO

Core-level photoelectron spectroscopy measurements have been performed of aqueous solutions of NaCl codissolved with NaClO(n) (n=1-4). Each species has a distinct Cl 2p electron binding energy, which can be exploited for depth-profiling experiments to study the competition between Cl(-) and ClO(n)(-) anions for residing in the outermost layers of the solution/vapor interface. Strongest propensity for the surface is observed for n=4 (perchlorate), followed by n=3 (chlorate), n=2 (chlorite), n=0 (chloride), and n=1 (hypochlorite). Molecular dynamics simulations rationalize the greatest surface propensity of the most oxidized anions in terms of their larger size and polarizability. The anomalous behavior of hypochlorite, being less surface-active than chloride, although it is both larger and more polarizable, is suggested to arise from the charge asymmetry over the anion, increasing its efficiency for bulk solvation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...