Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 366: 328-341, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38168561

RESUMO

Activated platelets promote tumor progression and metastasis through active interactions with cancer cells, especially in promoting epithelial-mesenchymal transition (EMT) of tumor cells and shedding tumor cells into the blood. Blocking platelet-tumor cell interactions can be a potential strategy to inhibit tumor metastasis. Platelet activation requires energy produced from aerobic glycolysis. Based on this, we propose a platelet suppression strategy by reprogramming glucose metabolism of platelets, which has an advantage over conventional antiplatelet treatment that has a risk of serious hemorrhage. We develop a biomimetic delivery system using platelet membrane-hybridized liposomes (PM-Lipo) for codelivery of quercetin and shikonin to simultaneously inhibit lactate transporter MCT-4 and a glycolytic enzyme PKM2 for achieving metabolic reprogramming of platelets and suppressing platelet activation. Notably, PM-Lipo can also inhibit glycolysis in cancer cells, which actually takes "two-birds-one-stone" action. Consequently, the platelet-tumor cell interactions are inhibited. Moreover, PM-Lipo can bind with circulating tumor cells and reduce their seeding in the premetastatic microenvironment. The in vivo studies further demonstrated that PM-Lipo can effectively suppress primary tumor growth and reduce lung metastasis without affecting inherited functions of platelets. Reprogramming glycolysis of platelets can remodel the tumor immune microenvironment, including suppression of Treg and stimulation of CTLs.


Assuntos
Lipossomos , Neoplasias Pulmonares , Humanos , Biomimética , Plaquetas , Glicólise , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/prevenção & controle , Microambiente Tumoral
3.
Mol Pharm ; 20(8): 3925-3936, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37505210

RESUMO

Colorectal cancer (CRC) therapy is a big challenge, and seeking an effective and safe drug is a pressing clinical need. Gambogic acid is a potent antineoplastic agent without the drawback of bone marrow suppression. To improve its druggability (e.g., poor water solubility and tumor delivery), a lactoferrin-modified gambogic acid liposomal delivery system (LF-lipo) was developed to enhance the treatment efficacy of CRC. The LF-lipo can specifically bind LRP-1 expressed on colorectal cancer cells to enhance drug delivery to the tumor cells and yield enhanced therapeutic efficacy. The LF-lipo promoted tumor cell apoptosis and autophagy, reduced reactive oxygen species (ROS) levels in tumor cells, and inhibited angiogenesis; moreover, it could also repolarize tumor-associated macrophages from the M2 to M1 phenotype and induce ICD to activate T cells, exhibiting the capability of remodeling the tumor immune microenvironment. The liposomal formulation yielded an efficient and safe treatment outcome and has potential for clinical translation.


Assuntos
Neoplasias Colorretais , Lipossomos , Humanos , Lipossomos/uso terapêutico , Lactoferrina , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Microambiente Tumoral
4.
Pharmaceutics ; 15(4)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37111742

RESUMO

Brain diseases remain a significant global healthcare burden. Conventional pharmacological therapy for brain diseases encounters huge challenges because of the blood-brain barrier (BBB) limiting the delivery of therapeutics into the brain parenchyma. To address this issue, researchers have explored various types of drug delivery systems. Cells and cell derivatives have attracted increasing interest as "Trojan horse" delivery systems for brain diseases, owing to their superior biocompatibility, low immunogenicity, and BBB penetration properties. This review provided an overview of recent advancements in cell- and cell-derivative-based delivery systems for the diagnosis and treatment of brain diseases. Additionally, it discussed the challenges and potential solutions for clinical translation.

5.
J Nanobiotechnology ; 20(1): 389, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36042499

RESUMO

Dysregulated mucosal immune responses and colonic fibrosis impose two formidable challenges for ulcerative colitis treatment. It indicates that monotherapy could not sufficiently deal with this complicated disease and combination therapy may provide a potential solution. A chitosan-modified poly(lactic-co-glycolic acid) nanoparticle (CS-PLGA NP) system was developed for co-delivering patchouli alcohol and simvastatin to the inflamed colonic epithelium to alleviate the symptoms of ulcerative colitis via remodeling immune microenvironment and anti-fibrosis, a so-called "two-birds-one-stone" nanotherapeutic strategy. The bioadhesive nanomedicine enhanced the intestinal epithelial cell uptake efficiency and improved the drug stability in the gastrointestinal tract. The nanomedicine effectively regulated the Akt/MAPK/NF-κB pathway and reshaped the immune microenvironment through repolarizing M2Φ, promoting regulatory T cells and G-MDSC, suppressing neutrophil and inflammatory monocyte infiltration, as well as inhibiting dendritic cell maturation. Additionally, the nanomedicine alleviated colonic fibrosis. Our work elucidates that the colon-targeted codelivery for combination therapy is promising for ulcerative colitis treatment and to address the unmet medical need.


Assuntos
Colite Ulcerativa , Colite , Nanopartículas , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Colo/metabolismo , Humanos , Nanomedicina
6.
Acta Pharmacol Sin ; 42(11): 1913-1920, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34561552

RESUMO

Sepsis is a dysregulated immune response to infection and potentially leads to life-threatening organ dysfunction, which is often seen in serious Covid-19 patients. Disulfiram (DSF), an old drug that has been used to treat alcohol addiction for decades, has recently been identified as a potent inhibitor of the gasdermin D (GSDMD)-induced pore formation that causes pyroptosis and inflammatory cytokine release. Therefore, DSF represents a promising therapeutic for the treatment of inflammatory disorders. Lactoferrin (LF) is a multifunctional glycoprotein with potent antibacterial and anti-inflammatory activities that acts by neutralizing circulating endotoxins and activating cellular responses. In addition, LF has been well exploited as a drug nanocarrier and targeting ligands. In this study, we developed a DSF-LF nanoparticulate system (DSF-LF NP) for combining the immunosuppressive activities of both DSF and LF. DSF-LF NPs could effectively block pyroptosis and inflammatory cytokine release from macrophages. Treatment with DSF-LF NPs showed remarkable therapeutic effects on lipopolysaccharide (LPS)-induced sepsis. In addition, this therapeutic strategy was also applied to treat ulcerative colitis (UC), and substantial treatment efficacy was achieved in a murine colitis model. The underlying mode of action of these DSF-LF-NPs may contribute to efficiently suppressing macrophage-mediated inflammatory responses and ameliorating the complications caused by sepsis and UC. As macrophage pyroptosis plays a pivotal role in inflammation, this safe and effective biomimetic nanomedicine may offer a versatile therapeutic strategy for treating various inflammatory diseases by repurposing DSF.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Colite Ulcerativa , Dissulfiram/farmacocinética , Lactoferrina , Síndrome de Resposta Inflamatória Sistêmica , Inibidores de Acetaldeído Desidrogenases/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Materiais Biomiméticos/farmacologia , COVID-19/imunologia , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/imunologia , Modelos Animais de Doenças , Dissulfiram/farmacologia , Portadores de Fármacos/farmacologia , Humanos , Imunossupressores/farmacologia , Lactoferrina/metabolismo , Lactoferrina/farmacologia , Lipopolissacarídeos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/uso terapêutico , Piroptose/efeitos dos fármacos , SARS-CoV-2 , Síndrome de Resposta Inflamatória Sistêmica/tratamento farmacológico , Síndrome de Resposta Inflamatória Sistêmica/imunologia , Síndrome de Resposta Inflamatória Sistêmica/metabolismo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...