Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(4): 3669-3680, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38241472

RESUMO

The construction of two-dimensional (2D) van der Waals (vdW) heterostructures over black phosphorus (BP) has been attracting significant attention to better utilize its inherent properties. The sandwich of zero-dimensional (0D) noble metals within BP-based vdW heterostructures can provide efficient catalytic channels, modulating their surface redox potentials and therefore inducing versatile functionalities. Herein, we realize a 2D WS2-Au-BP heterostructure, in which Au nanoparticles are connected between BP and WS2 via ionic bonds. The ultralow conduction band minimum position, the reduced adsorption energies of O2, and the increased dissociation barrier energy of O2- into 2O contribute greatly to improving the long-term stability of BP in the air. The formation of heterostructures can reduce the potential barrier energy in target gas molecules, thus enhancing the absorption energy and charge transfer. Taking the paramagnetic NO2 gas molecules as a representative, a stable response magnitude of 2.11 to 100 ppb NO2 is achieved for 80 days, which is far larger than the initial responses of most BP-based materials. A practical gas sensing system is also developed to demonstrate its real-world implementation. This work provides a promising demonstration of 0D noble metal within 2D BP-based vdW heterostructure for simultaneously improving the long-term stability and room-temperature reversible gas sensing.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38015181

RESUMO

Due to excellent gas sensing performances, such as high responsivity, good selectivity, and long-term stability, two-dimensional (2D) nonlayered metal oxide semiconductors have attracted wide attention. However, their thickness-dependent gas sensing behaviors are rarely investigated, which is critical in the development of practical 2D sensors. In this work, 2D In2O3 crystals with a range of thicknesses are realized by extracting the self-limited oxide layer from the liquid indium droplets in a controlled environment. A strong thickness-dependent optoelectronic NO2 sensing behavior at room temperature is observed. While full reversibility and excellent selectivity toward NO2 are shown despite the thicknesses of 2D In2O3, the 1.9 nm thick In2O3 exhibits a maximum response amplitude (ΔI/Ig = 1300) for 10 ppm of NO2 at room temperature with 365 nm light irradiation, which is about 18, 58, and 810 times larger than those of its 3.1 nm thick, 4.5 nm thick, and 6.2 nm thick counterparts, respectively. The shortest response and recovery times (i.e., 40 s/48 s) are demonstrated for the 1.88 nm thick In2O3 as well. We correlate such a phenomenon with the change in the In2O3 band structure, which is influenced by the thickness of 2D crystals. This work provides in-depth knowledge of the thickness-dependent gas-sensing performances of emerging 2D nonlayered metal oxide crystals, as well as the opportunities to develop next-generation high-performing room-temperature gas sensors.

3.
Nanoscale ; 15(34): 14249-14256, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37602367

RESUMO

All fluorescence white organic light-emitting diodes (WOLEDs) based on thermally activated delayed fluorescence (TADF) emitters are an attractive route to realize highly efficient and high color quality white light sources. However, harvesting triplet excitons in these devices remains a formidable challenge, particularly for WOLEDs involving conventional fluorescent emitters. Herein, we report a universal design strategy based on a co-host system and a cascaded exciton transfer configuration. The co-host system furnishes a broad and charge-balanced exciton generation zone, which simultaneously endows the devices with low efficiency roll-off and good color stability. A yellow TADF layer is put forward as an intermediate sensitizer layer between the blue TADF light-emitting layer (EML) and the red fluorescence EML, which not only constructs an efficient cascaded Förster energy transfer route but also blocks the triplet exciton loss channel through Dexter energy transfer. With the proposed design strategy, three-color all fluorescence WOLEDs reach a maximum external quantum efficiency (EQE) of 22.4% with a remarkable color rendering index (CRI) of 92 and CIE coordinates of (0.37, 0.40). Detailed optical simulation confirms the high exciton utilization efficiency. Finally, by introducing an efficient blue emitter 5Cz-TRZ, a maximum EQE of 30.1% is achieved with CIE coordinates of (0.42, 0.42) and a CRI of 84 at 1000 cd m-2. These outstanding results demonstrate the great potential of all fluorescence WOLEDs in solid-state lighting and display panels.

4.
J Colloid Interface Sci ; 645: 86-95, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37146382

RESUMO

Thiol functionalization of two-dimensional (2D) metal sulfides has been demonstrated as an effective approach to enhance the sensing performances. However, most thiol functionalization is realized by multiple-step approaches in liquid medium and depends on the dispersity of 2D materials. Here, we utilize a three-dimensional (3D) In2S3 nano-porous structure that self-assembled from 2D components as the nanoreactor, in which the surface-absorbed thiol molecules from the chemical residues of the nanoreactor are used for the in-situ covalent functionalization. Such functionalization is realized by facile heat the nanoreactor at 100 °C, leading to the recombing sulfur vacancies with thiol-terminated groups. The NO2 sensing performances of such functionalized nanoreactor are investigated at room temperature, in which In2S3-100 exhibits a response magnitude of 21.5 towards 10 ppm NO2 with full reversibility, high selectivity, and excellent repeatability. Such high-performance gas sensors can be attributed to the additional electrons that transferring from the functional group into the host, thus significantly modifying the electronic band structure. This work provides a guideline for the facile in-situ functionalization of metal sulfides and an efficient strategy for the high performances gas sensors without external stimulus.

5.
J Hazard Mater ; 451: 131184, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-36933506

RESUMO

The adverse effects of NO2 on the environment and human health promote the development of high-performance gas sensors to address the need for monitoring. Two-dimensional (2D) metal chalcogenides have been considered an emerging group of NO2-sensitive materials, while incomplete recovery and low long-term stability are the two major hurdles for their practical implementation. The transformation into oxychalcogenides is an effective strategy to alleviate these drawbacks, but usually requires multiple-step synthesis and lacks controllability. Here, we prepare tailorable 2D p-type gallium oxyselenide with the thicknesses of 3-4 nm, through a single-step mechanochemical synthesis that combines the in-situ exfoliation and oxidation of bulk crystals. The optoelectronic NO2 sensing performances of such 2D gallium oxyselenide with different oxygen contents are investigated at room temperature, in which 2D GaSe0.58O0.42 exhibits the largest response magnitude of 82.2% towards 10 ppm NO2 at the irradiation of UV, with full reversibility, excellent selectivity, and long term stability for at least one month. Such overall performances are significantly improved over those of reported oxygen-incorporated metal chalcogenide-based NO2 sensors. This work provides a feasible approach to prepare 2D metal oxychalcogenides in a single-step manner and demonstrates their great potential for room-temperature fully reversible gas sensing.

6.
J Colloid Interface Sci ; 629(Pt B): 960-969, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36208608

RESUMO

Non-precious metals have been considered as suitable alternatives for high-performance hydrogen evolution reactions (HER). Although the incorporation of carbon substances is shown to improve the number of active sites, electron transfer pathways, and long-term stability, there have been rare reports on their single-step scalable production. Herein, we realize free-standing two-dimensional (2D) carbon sheets heterostructured with nickel (Ni) nanocatalysts by pyrolyzing ultrathin layers of acetate tetrahydrate (i.e. the single precursor for both Ni and C sources) over water-soluble salt crystals. Such a salt-templated methodology is environmentally friendly and readily scalable without the implementation of sophisticated equipment. The resulting 2D carbon sheets exhibit an average small thickness of âˆ¼ 3 nm and lateral dimensions with tens of micrometers, where a large number of nano-sized Ni particles with an average diameter of 14 nm are uniformly dispersed. Such 2D Ni-C sheets demonstrate a small overpotential of 111 mV at 10 mA/cm2 and a low Tafel slope of 86 mV/dec for HER in 1 M KOH, which is significantly improved over those of reported non-precious metals composited with carbon substances. This work offers new insight into the design and practical production of non-precious metal matrixes for economical HER.

7.
Mater Horiz ; 9(9): 2288-2324, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35770972

RESUMO

Metal oxides modified with dopants and defects are an emerging class of novel materials supporting the localized surface plasmon resonance across a wide range of optical wavelengths, which have attracted tremendous research interest particularly in biological applications in the past decade. Compared to conventional noble metal-based plasmonic materials, plasmonic metal oxides are particularly favored for their cost efficiency, flexible plasmonic properties, and improved biocompatibility, which can be important to accelerate their practical implementation. In this review, we first explicate the origin of plasmonics in dopant/defect-enabled metal oxides and their associated tunable localized surface plasmon resonance through the conventional Mie-Gans model. The research progress of dopant incorporation and defect generation in metal oxide hosts, including both in situ and ex situ approaches, is critically discussed. The implementation of plasmonic metal oxides in biological applications in terms of therapy, imaging, and sensing is summarized, in which the uniqueness of dopant/defect-driven plasmonics for inducing novel functionalities is particularly emphasized. This review may provide insightful guidance for developing next-generation plasmonic devices for human health monitoring, diagnosis and therapy.


Assuntos
Óxidos , Ressonância de Plasmônio de Superfície , Humanos
8.
Small Methods ; 6(9): e2200429, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35676230

RESUMO

Hollow metal-organic frameworks (MOFs) with careful phase engineering have been considered to be suitable candidates for high-performance microwave absorbents. However, there has been a lack of direct methods tailored to MOFs in this area. Here, a facile and safe Ni2+ -exchange strategy is proposed to synthesize graphite/CoNi alloy hollow porous composites from Ni2+ concentration-dependent etching of Zeolite imidazole frame-67 (ZIF-67) MOF and subsequent thermal field regulation. Such a special combination of hollow structure and carefully selected hybrid phase are with optimized impedance matching and electromagnetic attenuation. Especially, the suitable carrier transport model and the rich polarization site enhance the dielectric loss, while more significant hysteresis loss and more natural resonance increase the magnetic loss. As a result, excellent microwave absorbing (MA) performances of both broadband absorption (7.63 GHz) and high-efficiency loss (-63.79 dB) are obtained. Moreover, the applicability and practicability of the strategy are demonstrated. This work illustrates the unique advantages of ion-exchange strategy in structure design, component optimization, and electromagnetic regulation, providing a new reference for the 5G cause and MA field.

9.
J Colloid Interface Sci ; 623: 378-404, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35594596

RESUMO

Organic framework materials, particularly metal-organic frameworks (MOFs), graphene-organic frameworks (GOFs), and covalent organic frameworks (COFs), have led to the revolution across fields including catalysts, sensors, gas capture, and biology mainly owing to their ultra-high surface area-to-volume ratio, on-demand tunable crystal structures, and unique surface properties. While the wet chemistry routes have been the predominant synthesis approach, the crystal phase, morphological parameters, and physicochemical properties of organic framework materials are largely affected by various synthesis parameters and precursors. In this work, we specifically review the influences of synthesis parameters towards crystal structures and chemical compositions of organic framework materials, including selected ligand types and lengths, reaction temperature/solvent/reactant compositions, as well as post-synthesis modification approaches. More importantly, the subsequent impacts on the general electronic, mechanical, surface chemical, and thermal properties as well as the consequent variation in performances towards catalytic, desalination, gas sensing, and gas storage applications are critically discussed. Finally, the current challenges and prospects of organic framework materials are provided.


Assuntos
Estruturas Metalorgânicas , Catálise , Ligantes , Estruturas Metalorgânicas/química , Propriedades de Superfície
10.
Adv Sci (Weinh) ; 9(22): e2201844, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35596610

RESUMO

Tandem structures with different subpixels are promising for perovskite-based multicolor electroluminescence (EL) devices in ultra-high-resolution full-color displays; however, realizing excellent luminance- and color-independent tunability considering the low brightness and stability of blue perovskite light-emitting diodes (PeLEDs) remains a challenge. Herein, a bright and stable blue gallium nitride (GaN) LED is utilized for vertical integration with a green MAPbBr3 PeLED, successfully achieving a Pe-GaN tandem LED with independently tunable luminance and color. The electronic and photonic co-excitation (EPCE) effect is found to suppress the radiative recombination and current injection of PeLEDs, leading to degraded luminance and current efficiency under direct current modulation. Accordingly, the pulse-width modulation is introduced to the tandem device with a negligible EPCE effect, and the average hybrid current efficiency is significantly improved by 139.5%, finally achieving a record tunable luminance (average tuning range of 16631 cd m-2 at an arbitrary color from blue to green) for perovskite-based multi-color LEDs. The reported excellent independent tunability can be the starting point for perovskite-based multicolor EL devices, enabling the combination with matured semiconductor technologies to facilitate their commercialization in advanced display applications with ultra-high resolution.

11.
iScience ; 25(1): 103598, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35005545

RESUMO

Atomically thin two-dimensional (2D) metal oxides exhibit unique optical, electrical, magnetic, and chemical properties, rendering them a bright application prospect in high-performance smart devices. Given the large variety of both layered and non-layered 2D metal oxides, the controllable synthesis is the critical prerequisite for enabling the exploration of their great potentials. In this review, recent progress in the synthesis of 2D metal oxides is summarized and categorized. Particularly, a brief overview of categories and crystal structures of 2D metal oxides is firstly introduced, followed by a critical discussion of various synthesis methods regarding the growth mechanisms, advantages, and limitations. Finally, the existing challenges are presented to provide possible future research directions regarding the synthesis of 2D metal oxides. This work can provide useful guidance on developing innovative approaches for producing both 2D layered and non-layered nanostructures and assist with the acceleration of the research of 2D metal oxides.

12.
J Hazard Mater ; 426: 127813, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34844798

RESUMO

Fiber-optic gas sensors have been considered a low-cost, effective, and robust approach for monitoring nitrogen dioxide (NO2) gas which is a major toxic gaseous pollutant. The integration of functional nanoscale materials provides additional dimensions for realizing ultra-sensitive and selective NO2 detection, however, the trade-off is the need for sophisticated photonic structures or external non-optical peripherals (e.g. electrical heaters). In this work, we demonstrate the development of a room temperature, all-optical, and high-performance NO2 sensor based on a simple D-shaped optical fiber incorporated with ultra-thin two-dimensional (2D) tin disulfide (SnS2). A visible light source at 473 nm is used to power the optical fiber, and at the same time excite the 2D SnS2 layer via the evanescent field, to generate extra charge carriers. Upon exposure to NO2 at room temperature, the physisorbed gas molecules induce charge exchange with the 2D SnS2. This significantly re-distributes the photo-excited charge carriers in the ultra-thin material, therefore manipulating the corresponding optical absorption and scattering. As a result, the optical output power intensity varies as the sensor output through the evanescent field coupling. This all-optical sensor demonstrates an optical power variation of up to 7 µW upon the exposure of NO2 gas at a low concentration of 50 ppb. This response is fully reversible with an extremely low limit of detection (LOD) of 0.464 ppb. We consider that this work provides a feasible and simple solution to realize high-performance optical gas sensors without the integration of external non-optical peripherals for effective monitoring of environmentally hazardous gases.

13.
J Colloid Interface Sci ; 610: 304-312, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34922081

RESUMO

Metal-organic frameworks (MOFs) with exceptional features such as high structural diversity and surface area as well as controlled pore size has been considered a promising candidate for developing room temperature highly-sensitive gas sensors. In comparison, the hetero-metallic MOFs with redox-active open-metal sites and mixed metal nodes may create peculiar surface properties and synergetic effects for enhanced gas sensing performances. In this work, the Fe atoms in the Fe3 (Porous coordination network) PCN-250 MOFs are partially replaced by transition metal Co, Mn, and Zn through a facile hydrothermal approach, leading to the formation of hetero-metallic MOFs (Fe2IIIMII, M = Co, Mn, and Zn). While the PCN-250 framework is maintained, the morphological and electronic band structural properties are manipulated upon the partial metal replacement of Fe. More importantly, the room temperature NO2 sensing performances are significantly varied, in which Fe2Mn PCN-250 demonstrates the largest response magnitude for ppb-level NO2 gas compared to those of pure Fe3 PCN-250 and other hetero-metallic MOF structures mainly attributed to the highest binding energy of NO2 gas. This work demonstrates the strong potential of hetero-metallic MOFs with carefully engineered substituted metal clusters for power-saving and high-performance gas sensing applications.

14.
Biosens Bioelectron ; 198: 113814, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34823964

RESUMO

The detection of cancer cells at the single-cell level enables many novel functionalities such as next-generation cancer prognosis and accurate cellular analysis. While surface-enhanced Raman spectroscopy (SERS) has been widely considered as an effective tool in a low-cost and label-free manner, however, it is challenging to discriminate single cancer cells with an accuracy above 90% mainly due to the poor biocompatibility of the noble-metal-based SERS agents. Here, we report a dual-functional nanoprobe based on dopant-driven plasmonic oxides, demonstrating a maximum accuracy above 90% in distinguishing single THP-1 cell from peripheral blood mononuclear cell (PBMC) and human embryonic kidney (HEK) 293 from human macrophage cell line U937 based on their SERS patterns. Furthermore, this nanoprobe can be triggered by the bio-redox response from individual cells towards stimuli, empowering another complementary colorimetric cell detection, approximately achieving the unity discrimination accuracy at a single-cell level. Our strategy could potentially enable the future accurate and low-cost detection of cancer cells from mixed cell samples.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Neoplasias , Células HEK293 , Humanos , Leucócitos Mononucleares , Neoplasias/diagnóstico , Óxidos , Análise Espectral Raman
15.
ACS Nano ; 15(3): 4045-4053, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33496575

RESUMO

Ultrathin transparent conductive oxides (TCOs) are emerging candidates for next-generation transparent electronics. Indium oxide (In2O3) incorporated with post-transition-metal ions (e.g., Sn) has been widely studied due to their excellent optical transparency and electrical conductivity. However, their electron transport properties are deteriorated at the ultrathin two-dimensional (2D) morphology compared to that of intrinsic In2O3. Here, we explore the domain of transition-metal dopants in ultrathin In2O3 with the thicknesses down to the single-unit-cell limit, which is realized in a large area using a low-temperature liquid metal printing technique. Zn dopant is selected as a representative to incorporate into the In2O3 rhombohedral crystal framework, which results in the gradual transition of the host to quasimetallic. While the optical transmittance is maintained above 98%, an electron field-effect mobility of up to 87 cm2 V-1 s-1 and a considerable sub-kΩ-1 cm-1 ranged electrical conductivity are achieved when the Zn doping level is optimized, which are in a combination significantly improved compared to those of reported ultrathin TCOs. This work presents various opportunities for developing high-performance flexible transparent electronics based on emerging ultrathin TCO candidates.

16.
J Colloid Interface Sci ; 588: 305-314, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33412351

RESUMO

Metal-organic frameworks (MOFs) nanocomposites are under the limelight due to their unique electronic, optical, and surface properties for various applications. Plasmonic MOFs enabled by noble metal nanostructures are an emerging class of MOF nanocomposites with efficient solar light-harvesting capability. However, major concerns such as poor photostability, sophisticated synthesis processes, and high fabrication cost are raised. Here, we develop a novel plasmonic MOF nanocomposite consisting of the ultra-thin degenerately doped molybdenum oxide core and the flexible iron MOF (FeMOF) shell through a hydrothermal growth, featuring low cost, facile synthesis, and non-toxicity. More importantly, the incorporation of plasmonic oxides in the highly porous MOF structure enhances the visible light absorbability, demonstrating improved photobleaching performances of various azo and non-azo dyes compared to that of pure FeMOF without the incorporation of oxidative agents. Furthermore, the nanocomposite exhibits enhanced sensitivity and selectivity towards NO2 gas at room temperature, attributed to the electron-rich surface of plasmonic oxides. This work possibly broadens the exploration of plasmonic MOF nanocomposites for practical and efficient solar energy harvesting, environmental remediation, and environmental monitoring applications.

17.
Nat Mater ; 20(8): 1073-1078, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33462466

RESUMO

Two-dimensional (2D) crystals are promising materials for developing future nano-enabled technologies1-6. The cleavage of weak, interlayer van der Waals bonds in layered bulk crystals enables the production of high-quality 2D, atomically thin monolayers7-10. Nonetheless, as earth-abundant compounds, metal oxides are rarely accessible as pure and fully stoichiometric monolayers owing to their ion-stabilized 'lamellar' bulk structure11-14. Here, we report the discovery of a layered planar hexagonal phase of oxides from elements across the transition metals, post-transition metals, lanthanides and metalloids, derived from strictly controlled oxidation at the metal-gas interface. The highly crystalline monolayers, without the support of ionic dopants or vacancies, can easily be mechanically exfoliated by stamping them onto substrates. Monolayer and few-layered hexagonal TiO2 are characterized as examples, showing p-type semiconducting properties with hole mobilities of up to 950 cm2 V-1 s-1 at room temperature. The strategy can be readily extended to a variety of elements, possibly expanding the exploration of metal oxides in the 2D quantum regime.

18.
Sensors (Basel) ; 22(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35009847

RESUMO

Reversible H2 gas sensing at room temperature has been highly desirable given the booming of the Internet of Things (IoT), zero-emission vehicles, and fuel cell technologies. Conventional metal oxide-based semiconducting gas sensors have been considered as suitable candidates given their low-cost, high sensitivity, and long stability. However, the dominant sensing mechanism is based on the chemisorption of gas molecules which requires elevated temperatures to activate the catalytic reaction of target gas molecules with chemisorbed O, leaving the drawbacks of high-power consumption and poor selectivity. In this work, we introduce an alternative candidate of cobalt oxysulfide derived from the calcination of self-assembled cobalt sulfide micro-cages. It is found that the majority of S atoms are replaced by O in cobalt oxysulfide, transforming the crystal structure to tetragonal coordination and slightly expanding the optical bandgap energy. The H2 gas sensing performances of cobalt oxysulfide are fully reversible at room temperature, demonstrating peculiar p-type gas responses with a magnitude of 15% for 1% H2 and a high degree of selectivity over CH4, NO2, and CO2. Such excellent performances are possibly ascribed to the physisorption dominating the gas-matter interaction. This work demonstrates the great potentials of transition metal oxysulfide compounds for room-temperature fully reversible gas sensing.

19.
ACS Nano ; 15(1): 550-562, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33356139

RESUMO

In this study, we analyze the influence of the pore structure of an SBA-15 particle on the light emission from its inner adsorbed quantum dots (QDs) and outer light-emitting diode (LED) chips. It is found that the particle features of a high refractive index, comparable feature size of pore structure, and lower amount of QD adsorption help with QD light extraction, demonstrating a mechanism to suppress QD light propagating through pores and thus reducing the reabsorption loss. We consequently developed highly efficient QD white LEDs with wet-mixing QD/SBA-15 nanocomposite particles (NPs) by further optimizing the packaging methods and the introduced NP mass ratio. The LEDs demonstrated a record luminous efficacy (the ratio of luminous flux to electrical power) of 206.8 (entrusted test efficiency of 205.8 lm W-1 certificated by China National Accreditation Service) and 137.6 lm W-1 at 20 mA for white LEDs integrating only green QDs and green-red QD color convertors, respectively, with improved operating stability. These results are comparable to conventional phosphor-based white LEDs, which can be a starting point for white LEDs only using QDs as convertors toward commercialization in the near future.

20.
Trends Biotechnol ; 39(6): 624-640, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33199046

RESUMO

Gallium (Ga) and Ga-based liquid metal (LM) alloys offer low toxicity, excellent electrical and thermal conductivities, and fluidity at or near room temperature. Ga-based LM particles (LMPs) synthesized from these LMs exhibit both fluidic and metallic properties and are suitable for versatile functionalization in therapeutics. Functionalized Ga-based LMPs can be actuated using physical or chemical stimuli for drug delivery, cancer treatment, bioimaging, and biosensing. However, many of the fundamentals of their unique characteristics for therapeutics remain underexplored. We present the most recent advances in Ga-based LMPs in therapeutics based on the underlying mechanisms of their design and implementation. We also highlight some future biotechnological opportunities for Ga-based LMPs based on their extraordinary advantages.


Assuntos
Gálio , Ligas/química , Ligas/uso terapêutico , Sistemas de Liberação de Medicamentos , Gálio/química , Gálio/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...