Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 341: 122353, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38876720

RESUMO

The use of Pickering emulsions for biocatalysis is gaining increased attention. However, the extensive application is greatly limited due to the enzyme inactivation. Herein, a biocatalytic Pickering emulsion with high-performance utilizing cellulose nanocrystals immobilized lipases (CNCs-Lps) particles as stabilizer is advanced and applied for the synthesis of Vitamin E nicotinate. CNCs-Lps display high activity and reusability due to the construction of biocatalytic microreactor in the O/W emulsion system. The yield of vitamin E nicotinate ester reached up to 83 %. More importantly, the CNCs-Lps can be reused due to the similar principles to microreactors in Pickering emulsions. Reusability test showed that the CNCs-Lps could be recovered from the emulsion system by centrifugation and the yield of vitamin E nicotinate retains 78 % of initial value after five cycles, demonstrating overwhelming advantage than the fair counterpart with free lipases.


Assuntos
Biocatálise , Celulose , Emulsões , Enzimas Imobilizadas , Lipase , Nanopartículas , Celulose/química , Emulsões/química , Lipase/química , Lipase/metabolismo , Nanopartículas/química , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Vitamina E/química
2.
Int J Mol Sci ; 20(18)2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31491861

RESUMO

Au nanoparticles (NPs) possess unique physicochemical and optical properties, showing great potential in biomedical applications. Diagnostic spectroscopy utilizing varied Au NPs has become a precision tool of in vitro and in vivo diagnostic for cancer and other specific diseases. In this review, we tried to comprehensively introduce the remarkable optical properties of Au NPs, including localized surfaces plasmon resonance (LSPR), surface-enhanced Raman scattering (SERS), and metal-enhanced fluorescence (MEF). Then, we highlighted the excellent works using Au NPs for optical diagnostic applications. Ultimately, the challenges and future perspective of using Au NPs for optical diagnostic were discussed.


Assuntos
Ouro , Nanopartículas Metálicas , Imagem Óptica , Animais , Ouro/química , Humanos , Imunoensaio , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Imagem Óptica/métodos , Análise Espectral Raman , Ressonância de Plasmônio de Superfície
3.
Sensors (Basel) ; 19(6)2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30934603

RESUMO

Förster resonance energy transfer (FRET)-based polymer dots (Pdots), fabricated by semiconducting polymers and exhibiting excellent properties, have attracted much interest in the last decade, however, full polymer-dot-based pH sensors are seldom systematically exploited by researchers. In this work, we constructed a kind of blend polymer dot, utilizing poly[(9,9-dihexyl-9H-fluorene-2,7-vinylene)-co-(1-methoxy-4-(2-ethylhexyloxy)-2,5-phenylenevinylene)] (PFV) as the donor, poly[2,5-bis(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] (BDMO-PPV) as the acceptor, and polysytrene graft EO functionalized with carboxy (PS-PEG-COOH) to generate surface carboxyl groups. This type of Pdot, based on the FRET process, was quite sensitive to pH value changes, especially low pH environments. When the pH value decreases down to 2 or 1, the fluorescence spectrum of Pdots-20% exhibit spectral and intensity changes at the same time, and fluorescence lifetime changes as well, which enables pH sensing applications. The sharpening of the emission peak at ~524 nm, along with the weakening and blue shifts of the emission band at ~573 nm, imply that the efficiency of the energy transfer between PFV and BDMO-PPV inside the Pdots-20% decreased due to polymer chain conformational changes. The time-resolved fluorescence measurements supported this suggestion. Pdots constructed by this strategy have great potential in many applications, such as industrial wastewater detection, in vitro and intracellular pH measurement, and DNA amplification and detection.

4.
Nanomaterials (Basel) ; 8(12)2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30513752

RESUMO

Gold nanocrystals have attracted considerable attention due to their excellent physical and chemical properties and their extensive applications in plasmonics, spectroscopy, biological detection, and nanoelectronics. Gold nanoparticles are able to be readily modified and arranged with DNA materials and protein molecules, as well as viruses. Particularly DNA materials with the advantages endowed by programmability, stability, specificity, and the capability to adapt to functionalization, have become the most promising candidates that are widely utilized for building plenty of discrete gold nanoarchitectures. This review highlights recent advances on the DNA-based assembly of gold nanostructures and especially emphasizes their resulted superior optical properties and principles, including plasmonic extinction, plasmonic chirality, surface enhanced fluorescence (SEF), and surface-enhanced Raman scattering (SERS).

5.
ACS Appl Mater Interfaces ; 9(17): 14953-14959, 2017 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-28395136

RESUMO

Cathode interlayers (CILs) with low-cost, low-toxicity, and excellent cathode modification ability are necessary for the large-scale industrialization of polymer solar cells (PSCs). In this contribution, we demonstrated one-pot synthesized carbon quantum dots (C-dots) with high production to serve as efficient CIL for inverted PSCs. The C-dots were synthesized by a facile, economical microwave pyrolysis in a household microwave oven within 7 min. Ultraviolet photoelectron spectroscopy (UPS) studies showed that the C-dots possessed the ability to form a dipole at the interface, resulting in the decrease of the work function (WF) of cathode. External quantum efficiency (EQE) measurements and 2D excitation-emission topographical maps revealed that the C-dots down-shifted the high energy near-ultraviolet light to low energy visible light to generate more photocurrent. Remarkably improvement of power conversion efficiency (PCE) was attained by incorporation of C-dots as CIL. The PCE was boosted up from 4.14% to 8.13% with C-dots as CIL, which is one of the best efficiency for i-PSCs used carbon based materials as interlayers. These results demonstrated that C-dots can be a potential candidate for future low cost and large area PSCs producing.

6.
Phys Chem Chem Phys ; 14(13): 4640-50, 2012 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-22370967

RESUMO

In order to investigate the steric effect of aromatic pendant groups and the electrical bistability in nonconjugated polymers potentially for memory device applications, two π-stacked polymers with different steric structures are synthesized and characterized. They exhibit two conductivity states and can be switched from an initial low-conductivity (OFF) state to a high-conductivity (ON) state. Additionally, they demonstrate nonvolatile write-once-read-many-times (WORM) memory behavior with an ON/OFF current ratio up to 10(4), and flash memory behavior with an ON/OFF current ratio of approximately 10(5). Both steady-state and time-resolved fluorescence spectroscopies are used to examine the conformational change of the polymers responding to an applied external electrical voltage. The results provide useful information on different steric effects of pendant groups in polymer chains, resulting in various electrical behaviors. The possibility in realizing an "erasable" behavior through breaking π-stacked structures of pendant groups by a reversal of the electric field was also discussed on the basis of temperature-dependent fluorescence spectroscopy investigation. These results may thus offer a guideline for the design of practical polymer memory devices via tuning steric structure of π-stacked polymers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...