Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 10(6): 1853-1867, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32265288

RESUMO

Homologous recombination is an important mechanism for genome integrity maintenance, and several homologous recombination genes are mutated in various cancers and cancer-prone syndromes. However, since in some cases homologous recombination can lead to mutagenic outcomes, this pathway must be tightly regulated, and mitotic hyper-recombination is a hallmark of genomic instability. We performed two screens in Saccharomyces cerevisiae for genes that, when deleted, cause hyper-recombination between direct repeats. One was performed with the classical patch and replica-plating method. The other was performed with a high-throughput replica-pinning technique that was designed to detect low-frequency events. This approach allowed us to validate the high-throughput replica-pinning methodology independently of the replicative aging context in which it was developed. Furthermore, by combining the two approaches, we were able to identify and validate 35 genes whose deletion causes elevated spontaneous direct-repeat recombination. Among these are mismatch repair genes, the Sgs1-Top3-Rmi1 complex, the RNase H2 complex, genes involved in the oxidative stress response, and a number of other DNA replication, repair and recombination genes. Since several of our hits are evolutionarily conserved, and repeated elements constitute a significant fraction of mammalian genomes, our work might be relevant for understanding genome integrity maintenance in humans.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Humanos , RecQ Helicases/genética , Sequências Repetitivas de Ácido Nucleico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
J Cell Biol ; 217(7): 2445-2462, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29875260

RESUMO

Ploidy is tightly regulated in eukaryotic cells and is critical for cell function and survival. Cells coordinate multiple pathways to ensure replicated DNA is segregated accurately to prevent abnormal changes in chromosome number. In this study, we characterize an unanticipated role for the Saccharomyces cerevisiae "remodels the structure of chromatin" (RSC) complex in ploidy maintenance. We show that deletion of any of six nonessential RSC genes causes a rapid transition from haploid to diploid DNA content because of nondisjunction events. Diploidization is accompanied by diagnostic changes in cell morphology and is stably maintained without further ploidy increases. We find that RSC promotes chromosome segregation by facilitating spindle pole body (SPB) duplication. More specifically, RSC plays a role in distributing two SPB insertion factors, Nbp1 and Ndc1, to the new SPB. Thus, we provide insight into a role for a SWI/SNF family complex in SPB duplication and ploidy maintenance.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas do Citoesqueleto/genética , Proteínas de Ligação a DNA/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética , Corpos Polares do Fuso/genética , Fatores de Transcrição/genética , Proteínas Cromossômicas não Histona/genética , Segregação de Cromossomos/genética , Membrana Nuclear/genética , Ploidias , Saccharomyces cerevisiae/genética , Fuso Acromático/genética
3.
Genetics ; 203(1): 147-57, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26920759

RESUMO

Double-strand DNA breaks occur upon exposure of cells to ionizing radiation and certain chemical agents or indirectly through replication fork collapse at DNA damage sites. If left unrepaired, double-strand breaks can cause genome instability and cell death, and their repair can result in loss of heterozygosity. In response to DNA damage, proteins involved in double-strand break repair by homologous recombination relocalize into discrete nuclear foci. We identified 29 proteins that colocalize with recombination repair protein Rad52 in response to DNA damage. Of particular interest, Ygr042w/Mte1, a protein of unknown function, showed robust colocalization with Rad52. Mte1 foci fail to form when the DNA helicase gene MPH1 is absent. Mte1 and Mph1 form a complex and are recruited to double-strand breaks in vivo in a mutually dependent manner. MTE1 is important for resolution of Rad52 foci during double-strand break repair and for suppressing break-induced replication. Together our data indicate that Mte1 functions with Mph1 in double-strand break repair.


Assuntos
RNA Helicases DEAD-box/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas de Ligação a Telômeros/metabolismo , RNA Helicases DEAD-box/genética , Dano ao DNA , Replicação do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Recombinação Homóloga , Ligação Proteica , Transporte Proteico , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Proteínas de Ligação a Telômeros/genética
4.
EMBO J ; 34(16): 2182-97, 2015 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-26113155

RESUMO

Obstructions to replication fork progression, referred to collectively as DNA replication stress, challenge genome stability. In Saccharomyces cerevisiae, cells lacking RTT107 or SLX4 show genome instability and sensitivity to DNA replication stress and are defective in the completion of DNA replication during recovery from replication stress. We demonstrate that Slx4 is recruited to chromatin behind stressed replication forks, in a region that is spatially distinct from that occupied by the replication machinery. Slx4 complex formation is nucleated by Mec1 phosphorylation of histone H2A, which is recognized by the constitutive Slx4 binding partner Rtt107. Slx4 is essential for recruiting the Mec1 activator Dpb11 behind stressed replication forks, and Slx4 complexes are important for full activity of Mec1. We propose that Slx4 complexes promote robust checkpoint signaling by Mec1 by stably recruiting Dpb11 within a discrete domain behind the replication fork, during DNA replication stress.


Assuntos
Replicação do DNA , DNA Fúngico/metabolismo , Endodesoxirribonucleases/metabolismo , Multimerização Proteica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Proteínas de Ciclo Celular , Histonas , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Nucleares , Ligação Proteica , Proteínas Serina-Treonina Quinases , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
5.
G3 (Bethesda) ; 5(5): 997-1006, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-25721128

RESUMO

Oncogenesis frequently is accompanied by rampant genome instability, which fuels genetic heterogeneity and resistance to targeted cancer therapy. We have developed an approach that allows precise, quantitative measurement of genome instability in high-throughput format in the Saccharomyces cerevisiae model system. Our approach takes advantage of the strongly DNA damage-inducible gene RNR3, in conjunction with the reporter synthetic genetic array methodology, to infer mutants exhibiting genome instability by assaying for increased Rnr3 abundance. We screen for genome instability across a set of ~1000 essential and ~4200 nonessential mutant yeast alleles in untreated conditions and in the presence of the DNA-damaging agent methylmethane sulfonate. Our results provide broad insights into the cellular processes and pathways required for genome maintenance. Through comparison with existing genome instability screens, we isolated 130 genes that had not previously been linked to genome maintenance, 51% of which have human homologs. Several of these homologs are associated with a genome instability phenotype in human cells or are causally mutated in cancer. A comprehensive understanding of the processes required to prevent genome instability will facilitate a better understanding of its sources in oncogenesis.


Assuntos
Dano ao DNA , Genes Fúngicos , Instabilidade Genômica , Transdução de Sinais , Leveduras/genética , Leveduras/metabolismo , Evolução Molecular , Regulação Fúngica da Expressão Gênica , Ontologia Genética , Genômica , Mutação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
6.
Nat Cell Biol ; 14(9): 966-76, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22842922

RESUMO

Relocalization of proteins is a hallmark of the DNA damage response. We use high-throughput microscopic screening of the yeast GFP fusion collection to develop a systems-level view of protein reorganization following drug-induced DNA replication stress. Changes in protein localization and abundance reveal drug-specific patterns of functional enrichments. Classification of proteins by subcellular destination enables the identification of pathways that respond to replication stress. We analysed pairwise combinations of GFP fusions and gene deletion mutants to define and order two previously unknown DNA damage responses. In the first, Cmr1 forms subnuclear foci that are regulated by the histone deacetylase Hos2 and are distinct from the typical Rad52 repair foci. In a second example, we find that the checkpoint kinases Mec1/Tel1 and the translation regulator Asc1 regulate P-body formation. This method identifies response pathways that were not detected in genetic and protein interaction screens, and can be readily applied to any form of chemical or genetic stress to reveal cellular response pathways.


Assuntos
Dano ao DNA , Replicação do DNA/fisiologia , Transporte Proteico/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Replicação do DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Deleção de Genes , Histona Desacetilases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Deleção de Sequência
7.
Genetics ; 192(1): 147-60, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22673806

RESUMO

Genetic screens of the collection of ~4500 deletion mutants in Saccharomyces cerevisiae have identified the cohort of nonessential genes that promote maintenance of genome integrity. Here we probe the role of essential genes needed for genome stability. To this end, we screened 217 tetracycline-regulated promoter alleles of essential genes and identified 47 genes whose depletion results in spontaneous DNA damage. We further showed that 92 of these 217 essential genes have a role in suppressing chromosome rearrangements. We identified a core set of 15 genes involved in DNA replication that are critical in preventing both spontaneous DNA damage and genome rearrangements. Mapping, classification, and analysis of rearrangement breakpoints indicated that yeast fragile sites, Ty retrotransposons, tRNA genes, early origins of replication, and replication termination sites are common features at breakpoints when essential replication genes that suppress chromosome rearrangements are downregulated. We propose mechanisms by which depletion of essential replication proteins can lead to double-stranded DNA breaks near these features, which are subsequently repaired by homologous recombination at repeated elements.


Assuntos
Replicação do DNA/genética , Deleção de Genes , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Translocação Genética/genética , Alelos , Quebra Cromossômica , Dano ao DNA/genética , Fase G2/genética , Instabilidade Genômica/genética , RNA de Transferência/genética , Retroelementos/genética , Fase S/genética , Saccharomyces cerevisiae/citologia , Sequências Repetidas Terminais/genética
8.
EMBO J ; 31(4): 895-907, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22234187

RESUMO

The integrity of the genome depends on diverse pathways that regulate DNA metabolism. Defects in these pathways result in genome instability, a hallmark of cancer. Deletion of ELG1 in budding yeast, when combined with hypomorphic alleles of PCNA results in spontaneous DNA damage during S phase that elicits upregulation of ribonucleotide reductase (RNR) activity. Increased RNR activity leads to a dramatic expansion of deoxyribonucleotide (dNTP) pools in G1 that allows cells to synthesize significant fractions of the genome in the presence of hydroxyurea in the subsequent S phase. Consistent with the recognized correlation between dNTP levels and spontaneous mutation, compromising ELG1 and PCNA results in a significant increase in mutation rates. Deletion of distinct genome stability genes RAD54, RAD55, and TSA1 also results in increased dNTP levels and mutagenesis, suggesting that this is a general phenomenon. Together, our data point to a vicious circle in which mutations in gatekeeper genes give rise to genomic instability during S phase, inducing expansion of the dNTP pool, which in turn results in high levels of spontaneous mutagenesis.


Assuntos
Replicação do DNA , Desoxirribonucleosídeos/metabolismo , Mutagênese , Saccharomyces cerevisiae/metabolismo , Dano ao DNA , Replicação do DNA/efeitos dos fármacos , Hidroxiureia/farmacologia , Fenótipo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Nat Methods ; 7(12): 1017-24, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21076421

RESUMO

Global quantitative analysis of genetic interactions is a powerful approach for deciphering the roles of genes and mapping functional relationships among pathways. Using colony size as a proxy for fitness, we developed a method for measuring fitness-based genetic interactions from high-density arrays of yeast double mutants generated by synthetic genetic array (SGA) analysis. We identified several experimental sources of systematic variation and developed normalization strategies to obtain accurate single- and double-mutant fitness measurements, which rival the accuracy of other high-resolution studies. We applied the SGA score to examine the relationship between physical and genetic interaction networks, and we found that positive genetic interactions connect across functionally distinct protein complexes revealing a network of genetic suppression among loss-of-function alleles.


Assuntos
Aptidão Genética , Genoma Fúngico , Leveduras/genética , Algoritmos , Regulação Fúngica da Expressão Gênica , Estudo de Associação Genômica Ampla/métodos , Mutagênese , Mutação , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Raios Ultravioleta , Leveduras/efeitos da radiação
10.
J Biol Chem ; 285(28): 21426-36, 2010 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-20445207

RESUMO

Human topoisomerase IIIalpha is a type IA DNA topoisomerase that functions with BLM and RMI1 to resolve DNA replication and recombination intermediates. BLM, human topoisomerase IIIalpha, and RMI1 catalyze the dissolution of double Holliday junctions into noncrossover products via a strand-passage mechanism. We generated single-stranded catenanes that resemble the proposed dissolution intermediate recognized by human topoisomerase IIIalpha. We demonstrate that human topoisomerase IIIalpha is a single-stranded DNA decatenase that is specifically stimulated by the BLM-RMI1 pair. In addition, RMI1 interacts with human topoisomerase IIIalpha, and the interaction is required for the stimulatory effect of RMI1 on decatenase activity. Our data provide direct evidence that human topoisomerase IIIalpha functions as a decatenase with the assistance of BLM and RMI1 to facilitate the processing of homologous recombination intermediates without crossing over as a mechanism to preserve genome integrity.


Assuntos
Proteínas de Transporte/metabolismo , DNA Topoisomerases Tipo I/fisiologia , DNA de Cadeia Simples/genética , Regulação da Expressão Gênica , Proteínas Nucleares/metabolismo , RecQ Helicases/metabolismo , Dano ao DNA , DNA Cruciforme/genética , Proteínas de Ligação a DNA , Genoma Humano , Humanos , Modelos Biológicos , Modelos Genéticos , Mutação , Conformação de Ácido Nucleico , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/metabolismo
11.
Proc Natl Acad Sci U S A ; 103(11): 4068-73, 2006 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-16537486

RESUMO

BLM encodes a member of the highly conserved RecQ DNA helicase family, which is essential for the maintenance of genome stability. Homozygous inactivation of BLM gives rise to the cancer predisposition disorder Bloom's syndrome. A common feature of many RecQ helicase mutants is a hyperrecombination phenotype. In Bloom's syndrome, this phenotype manifests as an elevated frequency of sister chromatid exchanges and interhomologue recombination. We have shown previously that BLM, together with its evolutionarily conserved binding partner topoisomerase IIIalpha (hTOPO IIIalpha), can process recombination intermediates that contain double Holliday junctions into noncrossover products by a mechanism termed dissolution. Here we show that a recently identified third component of the human BLM/hTOPO IIIalpha complex, BLAP75/RMI1, promotes dissolution catalyzed by hTOPO IIIalpha. This activity of BLAP75/RMI1 is specific for dissolution catalyzed by hTOPO IIIalpha because it has no effect in reactions containing either Escherichia coli Top1 or Top3, both of which can also catalyze dissolution in a BLM-dependent manner. We present evidence that BLAP75/RMI1 acts by recruiting hTOPO IIIalpha to double Holliday junctions. Implications of the conserved ability of type IA topoisomerases to catalyze dissolution and how the evolution of factors such as BLAP75/RMI1 might confer specificity on the execution of this process are discussed.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Transporte/metabolismo , DNA Helicases/metabolismo , Recombinação Genética , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Síndrome de Bloom/genética , Síndrome de Bloom/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/genética , DNA Helicases/química , DNA Helicases/genética , DNA Topoisomerases Tipo I/química , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , DNA Cruciforme/química , DNA Cruciforme/genética , DNA Cruciforme/metabolismo , Proteínas de Ligação a DNA , Escherichia coli/genética , Humanos , Técnicas In Vitro , Complexos Multiproteicos , Proteínas Nucleares , Fenótipo , Ligação Proteica , RecQ Helicases , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Troca de Cromátide Irmã
12.
EMBO J ; 22(16): 4304-13, 2003 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-12912927

RESUMO

Genome-wide synthetic genetic interaction screens with mutants in the mus81 and mms4 replication fork-processing genes identified a novel replication factor C (RFC) homolog, Elg1, which forms an alternative RFC complex with Rfc2-5. This complex is distinct from the DNA replication RFC, the DNA damage checkpoint RFC and the sister chromatid cohesion RFC. As expected from its genetic interactions, elg1 mutants are sensitive to DNA damage. Elg1 is redundant with Rad24 in the DNA damage response and contributes to activation of the checkpoint kinase Rad53. We find that elg1 mutants display DNA replication defects and genome instability, including increased recombination and mutation frequencies, and minichromosome maintenance defects. Mutants in elg1 show genetic interactions with pathways required for processing of stalled replication forks, and are defective in recovery from DNA damage during S phase. We propose that Elg1-RFC functions both in normal DNA replication and in the DNA damage response.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Saccharomyces cerevisiae , Proteínas de Transporte/genética , Quinase do Ponto de Checagem 2 , Dano ao DNA , Replicação do DNA/efeitos dos fármacos , Replicação do DNA/efeitos da radiação , Proteínas de Ligação a DNA/genética , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Genoma , Hidroxiureia/farmacologia , Mutagênicos/toxicidade , Mutação , Inibidores da Síntese de Ácido Nucleico/farmacologia , Oxigenases/toxicidade , Proteínas Serina-Treonina Quinases/metabolismo , Recombinação Genética , Proteína de Replicação C , Fase S , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Raios Ultravioleta/efeitos adversos
13.
Mol Cell Biol ; 22(13): 4477-90, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12052858

RESUMO

The fission yeast Dbf4 homologue Dfp1 has a well-characterized role in regulating the initiation of DNA replication. Sequence analysis of Dfp1 homologues reveals three highly conserved regions, referred to as motifs N, M, and C. To determine the roles of these conserved regions in Dfp1 function, we have generated dfp1 alleles with mutations in these regions. Mutations in motif N render cells sensitive to a broad range of DNA-damaging agents and replication inhibitors, yet these mutant proteins are efficient activators of Hsk1 kinase in vitro. In contrast, mutations in motif C confer sensitivity to the alkylating agent methyl methanesulfonate (MMS) but, surprisingly, not to UV, ionizing radiation, or hydroxyurea. Motif C mutants are poor activators of Hsk1 in vitro but can fulfill the essential function(s) of Dfp1 in vivo. Strains carrying dfp1 motif C mutants have an intact mitotic and intra-S-phase checkpoint, and epistasis analysis indicates that dfp1 motif C mutants function outside of the known MMS damage repair pathways, suggesting that the observed MMS sensitivity is due to defects in recovery from DNA damage. The motif C mutants are most sensitive to MMS during S phase and are partially suppressed by deletion of the S-phase checkpoint kinase cds1. Following treatment with MMS, dfp1 motif C mutants exhibit nuclear fragmentation, chromosome instability, precocious recombination, and persistent checkpoint activation. We propose that Dfp1 plays at least two genetically separable roles in the DNA damage response in addition to its well-characterized role in the initiation of DNA replication and that motif C plays a critical role in the response to alkylation damage, perhaps by restarting or stabilizing stalled replication forks.


Assuntos
Proteínas de Ciclo Celular , Cromossomos Fúngicos , Proteínas Fúngicas/genética , Proteínas Serina-Treonina Quinases , Fase S/genética , Proteínas de Saccharomyces cerevisiae , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces/genética , Alquilação , Sequência de Aminoácidos , Antineoplásicos Alquilantes/farmacologia , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/genética , Núcleo Celular/ultraestrutura , Quinase 1 do Ponto de Checagem , Sequência Conservada , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/genética , Replicação do DNA/efeitos dos fármacos , Proteínas Fúngicas/metabolismo , Metanossulfonato de Metila/farmacologia , Mitose , Mutação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Recombinação Genética , Schizosaccharomyces/citologia , Schizosaccharomyces/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...