Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
2.
Genome Med ; 16(1): 49, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566201

RESUMO

BACKGROUND: The efficacy of neoadjuvant chemo-immunotherapy (NAT) in esophageal squamous cell carcinoma (ESCC) is challenged by the intricate interplay within the tumor microenvironment (TME). Unveiling the immune landscape of ESCC in the context of NAT could shed light on heterogeneity and optimize therapeutic strategies for patients. METHODS: We analyzed single cells from 22 baseline and 24 post-NAT treatment samples of stage II/III ESCC patients to explore the association between the immune landscape and pathological response to neoadjuvant anti-PD-1 combination therapy, including pathological complete response (pCR), major pathological response (MPR), and incomplete pathological response (IPR). RESULTS: Single-cell profiling identified 14 major cell subsets of cancer, immune, and stromal cells. Trajectory analysis unveiled an interesting link between cancer cell differentiation and pathological response to NAT. ESCC tumors enriched with less differentiated cancer cells exhibited a potentially favorable pathological response to NAT, while tumors enriched with clusters of more differentiated cancer cells may resist treatment. Deconvolution of transcriptomes in pre-treatment tumors identified gene signatures in response to NAT contributed by specific immune cell populations. Upregulated genes associated with better pathological responses in CD8 + effector T cells primarily involved interferon-gamma (IFNγ) signaling, neutrophil degranulation, and negative regulation of the T cell apoptotic process, whereas downregulated genes were dominated by those in the immune response-activating cell surface receptor signaling pathway. Natural killer cells in pre-treatment tumors from pCR patients showed a similar upregulation of gene expression in response to IFNγ but a downregulation of genes in the neutrophil-mediated immunity pathways. A decreased cellular contexture of regulatory T cells in ESCC TME indicated a potentially favorable pathological response to NAT. Cell-cell communication analysis revealed extensive interactions between CCL5 and its receptor CCR5 in various immune cells of baseline pCR tumors. Immune checkpoint interaction pairs, including CTLA4-CD86, TIGIT-PVR, LGALS9-HAVCR2, and TNFSF4-TNFRSF4, might serve as additional therapeutic targets for ICI therapy in ESCC. CONCLUSIONS: This pioneering study unveiled an intriguing association between cancer cell differentiation and pathological response in esophageal cancer patients, revealing distinct subgroups of tumors for which neoadjuvant chemo-immunotherapy might be effective. We also delineated the immune landscape of ESCC tumors in the context of clinical response to NAT, which provides clinical insights for better understanding how patients respond to the treatment and further identifying novel therapeutic targets for ESCC patients in the future.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/terapia , Terapia Neoadjuvante , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/terapia , Imunoterapia , Terapia Combinada , Microambiente Tumoral , Ligante OX40
3.
J Pathol Clin Res ; 10(3): e12375, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38661052

RESUMO

Pulmonary spindle cell carcinoma (PSCC) is a rare and aggressive non-small cell lung cancer (NSCLC) subtype with a dismal prognosis. The molecular characteristics of PSCC are largely unknown due to its rarity, which limits the diagnosis and treatment of this historically poorly characterized malignancy. We present comprehensive genomic profiling results of baseline tumor samples from 22 patients histologically diagnosed with PSCC, representing the largest cohort to date. Somatic genetic variant detection was compared between paired plasma samples and primary tumors from 13 patients within our cohort. The associations among genomic features, treatment, and prognosis were also analyzed in representative patient cases. TP53 (54.5%), TERT (36.4%), CDKN2A (27.3%), and MET (22.7%) were most frequently mutated. Notably, 81.8% of patients had actionable targets in their baseline tumors, including MET (22.7%), ERBB2 (13.6%), EGFR (9.1%), KRAS (9.1%), ALK (9.1%), and ROS1 (4.5%). The median tumor mutation burden (TMB) for PSCC tumors was 5.5 mutations per megabase (muts/Mb). TMB-high tumors (>10 muts/Mb) exhibited a significantly higher mutation frequency in genes such as KRAS, ARID2, FOXL2, and LRP1B, as well as within the DNA mismatch repair pathway. The detection rates for single nucleotide variants and structural variants were comparable between matched tumor and plasma samples, with 48.6% of genetic variants being mutually identified in both sample types. Additionally, a patient with a high mutation load and positive PD-L1 expression demonstrated a 7-month survival benefit from chemoimmunotherapy. Furthermore, a patient with an ALK-rearranged tumor achieved a remarkable 3-year progression-free survival following crizotinib treatment. Overall, our findings deepen the understanding of the complex genomic landscape of PSCC, revealing actionable targets amenable to tailored treatment of this poorly characterized malignancy.


Assuntos
Biomarcadores Tumorais , Neoplasias Pulmonares , Mutação , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/mortalidade , Idoso , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/sangue , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/sangue , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Genômica , Adulto , Idoso de 80 Anos ou mais , Estudos de Coortes , Perfilação da Expressão Gênica , Prognóstico
4.
Int J Surg ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502852

RESUMO

BACKGROUND: Patients with peritoneal metastasis (PM) from gastric cancer (GC) exhibit poor prognosis. Chemoimmunotherapy offers promising clinical benefits; however, its efficacy and predictive biomarkers in a conversion therapy setting remain unclear. The authors aimed to retrospectively evaluate chemoimmunotherapy efficacy in a conversion therapy setting for GC patients with PM and establish a prediction model for assessing clinical benefits. MATERIALS AND METHODS: A retrospective evaluation of clinical outcomes encompassed 55 GC patients with PM who underwent chemoimmunotherapy in a conversion therapy setting. Baseline PM specimens were collected for genomic and transcriptomic profiling. Clinicopathological factors, gene signatures, and tumor immune microenvironment were evaluated to identify predictive markers and develop a prediction model. RESULTS: Chemoimmunotherapy achieved a 41.8% objective response rate and 72.4% R0 resection rate in GC patients with PM. Patients with conversion surgery showed better overall survival (OS) than those without the surgery (median OS: not reached vs 7.82 m, P<0.0001). Responders to chemoimmunotherapy showed higher ERBB2 and ERBB3 mutation frequencies, CTLA4 and HLA-DQB1 expression, and CD8+ T cell infiltration, but lower CDH1 mutation and naïve CD4+ T cell infiltration, compared to nonresponders. A prediction model was established integrating CDH1 and ERBB3 mutations, HLA-DQB1 expression, and naïve CD4+ T cell infiltration (AUC=0.918), which were further tested using an independent external cohort (AUC=0.785). CONCLUSION: This exploratory study comprehensively evaluated clinicopathological, genomic, and immune features and developed a novel prediction model, providing a rational basis for the selection of GC patients with PM for chemoimmunotherapy-involved conversion therapy.

6.
Infection ; 52(2): 625-636, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38368306

RESUMO

BACKGROUND: Infectious etiologies of lower respiratory tract infections (LRTIs) by the conventional microbiology tests (CMTs) can be challenging. Metagenomic next-generation sequencing (mNGS) has great potential in clinical use for its comprehensiveness in identifying pathogens, particularly those difficult-to-culture organisms. METHODS: We analyzed a total of 205 clinical samples from 201 patients with suspected LRTIs using mNGS in parallel with CMTs. mNGS results were used to guide treatment adjustments for patients who had negative CMT results. The efficacy of treatment was subsequently evaluated in these patients. RESULTS: mNGS-detected microorganisms in 91.7% (188/205) of the clinical samples, whereas CMTs demonstrated a lower detection rate, identifying microorganisms in only 37.6% (77/205) of samples. Compared to CMT results, mNGS exhibited a detection sensitivity of 93.5% and 95.4% in all 205 clinical samples and 180 bronchoalveolar lavage fluid (BALF) samples, respectively. A total of 114 patients (114/201; 56.7%) showed negative CMT results, among which 92 received treatment adjustments guided by their positive mNGS results. Notably, 67.4% (62/92) of patients demonstrated effective treatment, while 25% (23/92) experienced a stabilized condition. Subgroup analysis of cancer patients revealed that 41.9% (13/31) exhibited an effective response to treatment, and 35.5% (11/31) maintained a stable condition following medication adjustments guided by mNGS. CONCLUSION: mNGS demonstrated great potential in identifying microorganisms of clinical significance in LRTIs. The rapid turnaround time and reduced susceptibility to the impact of antimicrobial administration make mNGS a valuable supplementary tool for diagnosis and treatment decision-making for suspected LRTIs in clinical practice.


Assuntos
Infecções Respiratórias , Humanos , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/tratamento farmacológico , Sequenciamento de Nucleotídeos em Larga Escala , Líquido da Lavagem Broncoalveolar , Metagenômica , Sensibilidade e Especificidade
7.
Clin Chim Acta ; 552: 117698, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38072301

RESUMO

BACKGROUND: Infective endocarditis is a life-threatening uncommon infectious disease, and we aimed to explore the clinical utility of venous or arterial blood-based metagenomic next-generation sequencing (mNGS) approaches to diagnose left-sided infective endocarditis (LSIE). METHODS: We prospectively studied 79 LSIE patients who received valvular surgery in our hospital. Results of blood culture, valve culture, venous blood-based mNGS, arterial blood-based mNGS, venous blood-based mNGS plus blood culture, and arterial blood-based mNGS plus blood culture were evaluated and compared. RESULTS: Both venous blood- and arterial blood-based mNGS methods displayed significantly higher positive detection rates than blood culture and valve culture (43.0 %, 49.4 % vs. 32.9 %, 19.0 %; P < 0.001). Strikingly, when combining blood-based mNGS and blood culture, the positive rate could be further improved to more than 60 %. Moreover, we found mNGS LSIE detection was closely associated with preoperative leukocyte (P = 0.027), neutrophil value (P = 0.018), vegetation ≥ 14 mm (P = 0.043), and vegetations in aortic valve (P = 0.048). In addition, we discovered that blood-based mNGS had a superir capacity over blood culture to detect gram-negative bacteria, fungi, Bartonella Quintana, and mixed infections than blood culture. CONCLUSION: This study indicates that venous blood- and arterial blood-based mNGS displayed high positive rate in the rapid detection of pathogens in high-risk LSIE patients.


Assuntos
Endocardite , Veias , Humanos , Estudos Prospectivos , Endocardite/diagnóstico , Leucócitos , Sequenciamento de Nucleotídeos em Larga Escala , Sensibilidade e Especificidade
8.
Cancer Lett ; 582: 216569, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38101608

RESUMO

Progression occurs in approximately two-thirds of patients with locally advanced non-small cell lung cancer (LA-NSCLC) receiving chemoradiation and consolidation immunotherapy. Molecular indicators for outcome prediction are under development. A novel metric, the ratio of mean to max variant allele frequency (mmVAF), was derived from 431 pre-treatment tissue biopsies from The Cancer Genome Atlas and evaluated in serial circulating tumor DNA (ctDNA) from 70 LA-NSCLC patients receiving definitive radiotherapy/chemoradiotherapy (RT/CRT) with/without immunotherapy. High mmVAFs in pre-treatment tissue biopsies, indicating clonal predominant tumors (P < 0.01), were associated with inferior overall survival [OS, hazard ratio (HR): 1.48, 95 % confidence interval (CI): 1.11-1.98]. Similar associations of mmVAF with clonality (P < 0.01) and OS (HR: 2.24, 95 % CI: 0.71-7.08) were observed in pre-treatment ctDNA. At 1-month post-RT, ctDNA mmVAF-high patients receiving consolidation immunotherapy exhibited improved progression-free survival (PFS) compared to those who did not (HR: 0.14, 95 % CI: 0.03-0.67). From the baseline to week 4 of RT and/or 1-month post-RT, survival benefits from consolidation immunotherapy were exclusively observed in ctDNA mmVAF-increased patients (PFS, HR: 0.39, 95 % CI: 0.14-1.15), especially in terms of distant metastasis (HR: 0.11, 95 % CI: 0.01-0.95). In summary, our longitudinal data demonstrated the applicability of ctDNA-defined clonality for prognostic stratification and immunotherapy benefit prediction in LA-NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/terapia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/tratamento farmacológico , Prognóstico , Quimiorradioterapia , Imunoterapia
9.
J Transl Med ; 21(1): 874, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38041093

RESUMO

BACKGROUND: ATM and ATR are two critical factors to regulate DNA damage response (DDR), and their mutations were frequently observed in different types of cancer, including non-small cell lung cancer (NSCLC). Given that the majority of identified ATM/ATR mutations were variants of uncertain significance, the clinical/molecular features of pathogenic ATM/ATR aberrations have not been comprehensively investigated in NSCLC. METHODS: Next-generation sequencing (NGS) analyses were conducted to investigate the molecular features in 191 NSCLC patients who harbored pathogenic/likely pathogenic ATM/ATR mutations and 308 NSCLC patients who did not have any types of ATM/ATR variants. The results were validated using an external cohort of 2727 NSCLC patients (including 48 with ATM/ATR pathogenic mutations). RESULTS: Most pathogenic ATM/ATR genetic alterations were frameshift and nonsense mutations that disrupt critical domains of the two proteins. ATM/ATR-mutated patients had significantly higher tumor mutational burdens (TMB; P < 0.001) and microsatellite instabilities (MSI; P = 0.023), but not chromosomal instabilities, than those without any ATM/ATR variations. In particular, KRAS mutations were significantly enriched in ATM-mutated patients (P = 0.014), whereas BRCA2 mutations (P = 0.014), TP53 mutations (P = 0.014), and ZNF703 amplification (P = 0.008) were enriched in ATR-mutated patients. Notably, patients with ATM/ATR pathogenic genetic alterations were likely to be accompanied by mutations in Fanconi anemia (FA) and homologous recombination (HR) pathways, which were confirmed using both the study (P < 0.001) and validation (P < 0.001) cohorts. Furthermore, the co-occurrence of FA/HR aberrations could contribute to increased TMB and MSI, and patients with both ATM/ATR and FA/HR mutations tended to have worse overall survival. CONCLUSIONS: Our results demonstrated the unique clinical and molecular features of pathogenic ATM/ATR mutations in NSCLC, which helps better understand the cancerous involvement of these DDR regulators, as well as directing targeted therapies and/or immunotherapies to treat ATM/ATR-mutated NSCLC, especially those with co-existing FA/HR aberrations.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Anemia de Fanconi , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Neoplasias Pulmonares/genética , Mutação/genética , Prognóstico , Recombinação Homóloga/genética , Proteínas de Transporte/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
10.
Cancers (Basel) ; 15(20)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37894366

RESUMO

Epidermal growth factor receptor (EGFR) T790M mutations drive resistance in 50% of patients with advanced non-small cell lung cancer (NSCLC) who progress on first/second generation (1G/2G) EGFR tyrosine kinase inhibitors (TKIs) and are sensitive to Osimertinib. Tissue sampling is the gold-standard modality of T790M testing, but it is invasive. We evaluated the efficacy of Osimertinib in patients with EGFR mutant NSCLC and T790M in circulating tumour DNA (ctDNA). PLASMA is a prospective, open-label, multicentre single-arm Phase II study. Patients with advanced NSCLC harbouring sensitizing EGFR and T790M mutations in plasma at progression from ≥one 1G/2G TKI were treated with 80 mg of Osimertinib daily until progression. The primary endpoint was the objective response rate (ORR); the secondary endpoints included progression-free survival (PFS), overall survival (OS), disease control rate (DCR) and toxicities. Plasma next-generation sequencing was performed to determine Osimertinib resistance mechanisms and assess serial ctDNA. A total of 110 patients from eight centres in five countries were enrolled from 2017 to 2019. The median follow-up duration was 2.64 (IQR 2.44-3.12) years. The ORR was 50.9% (95% CI 41.2-60.6) and the DCR was 84.5% (95% CI 76.4-90.7). Median PFS was 7.4 (95% CI 6.0-9.3) months; median OS was 1.63 (95% CI 1.35-2.16) years. Of all of the patients, 76% had treatment-related adverse events (TRAEs), most commonly paronychia (22.7%); 11% experienced ≥ Grade 3 TRAEs. The ctDNA baseline load and dynamics were prognostic. Osimertinib is active in NSCLC harbouring sensitizing EGFR and T790M mutations in ctDNA testing post 1G/2G TKIs.

12.
Front Oncol ; 13: 1237308, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37799479

RESUMO

Introduction: The distinction between multiple primary lung cancer (MPLC) and intrapulmonary metastasis (IPM) holds clinical significance in staging, therapeutic intervention, and prognosis assessment for multiple lung cancer. Lineage tracing by clinicopathologic features alone remains a clinical challenge; thus, we aimed to develop a multi-omics analysis method delineating spatiotemporal heterogeneity based on tumor genomic profiling. Methods: Between 2012 and 2022, 11 specimens were collected from two patients diagnosed with multiple lung cancer (LU1 and LU2) with synchronous/metachronous tumors. A novel multi-omics analysis method based on whole-exome sequencing, transcriptome sequencing (RNA-Seq), and tumor neoantigen prediction was developed to define the lineage. Traditional clinicopathologic reviews and an imaging-based algorithm were performed to verify the results. Results: Seven tissue biopsies were collected from LU1. The multi-omics analysis method demonstrated that three synchronous tumors observed in 2018 (LU1B/C/D) had strong molecular heterogeneity, various RNA expression and immune microenvironment characteristics, and unique neoantigens. These results suggested that LU1B, LU1C, and LU1D were MPLC, consistent with traditional lineage tracing approaches. The high mutational landscape similarity score (75.1%), similar RNA expression features, and considerable shared neoantigens (n = 241) revealed the IPM relationship between LU1F and LU1G which were two samples detected simultaneously in 2021. Although the multi-omics analysis method aligned with the imaging-based algorithm, pathology and clinicopathologic approaches suggested MPLC owing to different histological types of LU1F/G. Moreover, controversial lineage or misclassification of LU2's synchronous/metachronous samples (LU2B/D and LU2C/E) traced by traditional approaches might be corrected by the multi-omics analysis method. Spatiotemporal heterogeneity profiled by the multi-omics analysis method suggested that LU2D possibly had the same lineage as LU2B (similarity score, 12.9%; shared neoantigens, n = 71); gefitinib treatment and EGFR, TP53, and RB1 mutations suggested the possibility that LU2E might result from histology transformation of LU2C despite the lack of LU2C biopsy and its histology. By contrast, histological interpretation was indeterminate for LU2D, and LU2E was defined as a primary or progression lesion of LU2C by histological, clinicopathologic, or imaging-based approaches. Conclusion: This novel multi-omics analysis method improves the accuracy of lineage tracing by tracking the spatiotemporal heterogeneity of serial samples. Further validation is required for its clinical application in accurate diagnosis, disease management, and improving prognosis.

13.
J Transl Med ; 21(1): 680, 2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777783

RESUMO

BACKGROUND: Metagenomic next-generation sequencing (mNGS) has become a powerful tool for pathogen detection, but the value of human sequencing reads generated from it is underestimated. METHODS: A total of 138 patients with pleural effusion (PE) were diagnosed with tuberculous pleurisy (TBP, N = 82), malignant pleural effusion (MPE, N = 35), or non-TB infection (N = 21), whose PE samples all underwent mNGS analysis. Clinical TB tests including culture, Acid-Fast Bacillus (AFB) test, Xpert, and T-SPOT, were performed. To utilize mNGS for MPE identification, 25 non-MPE samples (20 TBP and 5 non-TB infection) were randomly selected to set human chromosome copy number baseline and generalized linear modeling was performed using copy number variant (CNV) features of the rest 113 samples (35 MPE and 78 non-MPE). RESULTS: The performance of TB detection was compared among five methods. T-SPOT demonstrated the highest sensitivity (61% vs. culture 32%, AFB 12%, Xpert 35%, and mNGS 49%) but with the highest false-positive rate (10%) as well. In contrast, mNGS was able to detect TB-genome in nearly half (40/82) of the PE samples from TBP subgroup, with 100% specificity. To evaluate the performance of using CNV features of the human genome for MPE prediction, we performed the leave-one-out cross-validation (LOOCV) in the subcohort excluding the 25 non-MPE samples for setting copy number standards, which demonstrated 54.1% sensitivity, 80.8% specificity, 71.7% accuracy, and an AUC of 0.851. CONCLUSION: In summary, we exploited the value of human and non-human sequencing reads generated from mNGS, which showed promising ability in simultaneously detecting TBP and MPE.


Assuntos
Derrame Pleural Maligno , Derrame Pleural , Tuberculose Pleural , Humanos , Tuberculose Pleural/diagnóstico , Derrame Pleural Maligno/diagnóstico , Derrame Pleural Maligno/genética , Sequenciamento de Nucleotídeos em Larga Escala , Metagenômica , Sensibilidade e Especificidade
14.
Adv Biol (Weinh) ; 7(12): e2300042, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37658484

RESUMO

Exome sequencing of in situ tumor samples reveals that mutated genes can predict the prognosis of patients with T-cell lymphoma (TCL). However, how tumor mutation burden (TMB) derived from circulating tumor DNA (ctDNA) may stratify TCL patients remains unclear.The plasma ctDNA of 79 newly diagnosed TCL patients from the clinical center is used for targeted exome sequencing, and the exome data of 4035 TCL patients from the Catalogue of Somatic Mutations in Cancer (COSMIC) database is obtained for comparison analysis.TCL patients with higher TMB, as evaluated with a panel of 120 genes (panel-TMB120), are associated with poor prognosis. More importantly, COX regression analysis identifies a subset of 13 genes in panel-TMB120, including AP3B1 (Adaptor related protein complex 3 subunit beta 1), ATM (Ataxia-telangiectasia mutated), BCL6 (B cell lymphoma 6), BRAF (B-Raf proto-oncogene, serine/threonine kinase), CDKN2B (Cyclin dependent kinase inhibitor 2B), EPCAM (Epithelial cell adhesion molecule), FBXO11 (F-box protein 11), JAK1 (Janus kinase 1), MDM2 (Murine double minute 2), NF1 (Neurofibromin 1), STAT5B (Signal transducer and activator of transcription 5B), STAT6 (Signal transducer and activator of transcription 6), and TET2 (Tet methylcytosine dioxygenase 2), which are significantly associated with prognosis. Specifically, higher TMB values calculated with these 13 genes (panel-TMB13) are able to significantly predict unfavorable prognosis for these patients. Together, panel-TMB13 and the International Prognostic Index (IPI) are used for risk stratification.Panel-TMB13 is identified, which can predict poor prognosis for TCL patients carrying higher panel-TMB13 scores and suggest that panel-TMB13 may be a potential biomarker for supplement risk stratification of TCL patients.


Assuntos
Proteínas F-Box , Linfoma de Células T Periférico , Neoplasias , Humanos , Animais , Camundongos , Biomarcadores Tumorais/genética , Proteínas Serina-Treonina Quinases , Prognóstico , Proteína-Arginina N-Metiltransferases
15.
Front Pediatr ; 11: 1130775, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37404554

RESUMO

Lichtheimia ramosa (L. ramosa) is an opportunistic fungal pathogen of the order Mucorales that may result in a rare but serious mucormycosis infection. Mucormycosis could be angioinvasive, causing thrombosis and necrosis in the nose, brain, digestive tract, and respiratory tract. The infection is highly lethal, especially in immunocompromised hosts, and the incidence has been on the rise. However, due to its relatively low incidence in pediatric population and the challenges with diagnosis, the awareness and management experience for pediatric mucormycosis are extremely limited, which might lead to poor outcomes. In this study, we comprehensively reviewed the course of a fatal rhinocerebral mucormycosis case in a pediatric neuroblastoma patient receiving chemotherapy. Due to a lack of awareness of the infection, the standard care of amphotericin B treatment was delayed and not administered until the identification of L. ramosa by metagenomic next-generation sequencing (mNGS)-based pan-pathogen detection of the patient's peripheral blood sample. We also reviewed the literature on L. ramosa infection cases reported worldwide between 2010 and 2022, with an analysis of clinical manifestation, prognosis, and epidemiological data. Our study not only highlighted the clinical value of comprehensive mNGS in rapid pathogen detection but also raised awareness of recognizing lethal fungal infection early in immunocompromised hosts including pediatric cancer patients.

16.
Front Oncol ; 13: 1150098, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37427097

RESUMO

Background: Lung cancer is the deadliest and most diagnosed type of cancer worldwide. The 5-year survival rate of lung adenocarcinoma (LUAD) dropped significantly when tumor stages advanced. Patients who received surgically resecting at the pre-invasive stage had a 5-year survival rate of nearly 100%. However, the study on the differences in gene expression profiles and immune microenvironment among pre-invasive LUAD patients is still lacking. Methods: In this study, the gene expression profiles of three pre-invasive LUAD stages were compared using the RNA-sequencing data of 10 adenocarcinoma in situ (AIS) samples, 12 minimally invasive adenocarcinoma (MIA) samples, and 10 invasive adenocarcinoma (IAC) samples. Results: The high expression levels of PTGFRN (Hazard Ratio [HR] = 1.45; 95% Confidence Interval [CI]: 1.08-1.94; log-rank P = 0.013) and SPP1 (HR = 1.44; 95% CI: 1.07-1.93; log-rank P = 0.015) were identified to be associated with LUAD prognosis. Moreover, the early LUAD invasion was accompanied by the enhancement of antigen presentation ability, reflected by the increase of myeloid dendritic cells infiltration rate (Cuzick test P < 0.01) and the upregulation of seven important genes participating in the antigen presentation, including HLA-A (Cuzick test P = 0.03), MICA (Cuzick test P = 0.01), MICB (Cuzick test P = 0.01), HLA-DPA1 (Cuzick test P = 0.04), HLA-DQA2 (Cuzick test P < 0.01), HLA-DQB1 (Cuzick test P = 0.03), and HLA-DQB2 (Cuzick test P < 0.01). However, the tumor-killing ability of the immune system was inhibited during this process, as there were no rising cytotoxic T cell activity (Cuzick test P = 0.20) and no increasing expression in genes encoding cytotoxic proteins. Conclusion: In all, our research elucidated the changes in the immune microenvironment during early-stage LUAD evolution and may provide a theoretical basis for developing novel early-stage lung cancer therapeutic targets.

18.
Cancer Biol Ther ; 24(1): 2223375, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-37337460

RESUMO

Molecular mechanisms behind potentially inferior prognosis of old cholangiocarcinoma (CCA) patients are unclear. Prevalence of interventional targets and the difference between young and old CCA patients are valuable for promising precision medicine. A total of 188 CCA patients with baseline tumor tissue samples were subgrouped into the young (≤45 years) and old (>45 years) sub-cohorts. Somatic and germline mutation profiles, differentially enriched genetic alterations, and actionable genetic alterations were compared. An external dataset was used for the validation of molecular features and the comparison of overall survival (OS). Compared to young patients, KRAS alterations were more common in old patients (P = .04), while FGFR2 fusions were less frequent (P = .05). TERT promoter mutations were exclusively detected in old patients. The external dataset (N = 392) revealed no significant difference in OS between young and old patients; however, old patient-enriched KRAS (hazard ratio [HR]: 1.96, 95% confidence interval [CI]: 1.37-2.80) and TERT alterations (HR: 2.03, 95% CI: 1.22-3.38) were associated with inferior OS. Approximately 38.3% of patients were identified of actionable oncogenic mutations indicative of a potential response to targeted therapy or immunotherapy. Actionable FGFR2 fusions (P = .01) and BRAFV600E (P = .04) mutations were more frequent in young females than old patients. The enrichment of KRAS/TERT alterations in CCA patients over 45 years resulted in inferior OS. Approximately one-third of CCA patients were eligible for targeted therapy or immunotherapy given the actionable mutations carried, especially young females.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Feminino , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Colangiocarcinoma/genética , Colangiocarcinoma/terapia , Prognóstico , Ductos Biliares Intra-Hepáticos/patologia , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/terapia , Genômica , Mutação
19.
Gynecol Oncol ; 175: 133-141, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37356314

RESUMO

BACKGROUND: Squamous cell carcinoma (SCC) and adenocarcinoma (AC) of the uterine cervix have distinct biological behaviors and different treatment responses. Studies on immune features and genomic profiling of these two pathologic types were limited and mainly focused on small patient cohorts. METHODS: From 2014 to 2021, 336 (254 SCC vs. 82 AC) cervical cancer patients who were diagnosed/treated in 7 medical centers in China were enrolled in the study. Next-generation sequencing of 425 cancer-relevant genes was performed on tumor tissues and liquid biopsies. Somatic alterations and immune response-related biomarkers were analyzed. Patient prognosis and immune infiltration were analyzed using data from The Cancer Genome Atlas (TCGA). RESULTS: AC tended to have more immunotherapy resistance-related STK11 alterations (P = 0.039), a higher proportion of microsatellite instability (P = 0.21), and more actionable mutations (P = 0.161). In contrast, higher tumor mutational burdens (TMB; P = 0.01), a higher proportion of TMB-high patients (P = 0.016), and more PD-L1-high patients (P = 0.0013) were observed in SCC. Multiple genetic alterations and aberrant signaling pathways were specifically enriched in AC (e.g., TP53, KRAS, ERBB2, and ARID1A alterations) or SCC (e.g., PIK3CA, FBXW7, EP300, and BAP1 mutations). Notably, AC-enriched genetic changes were significantly associated with decreased infiltrations of various B cells, T cells, and dendritic cells, whereas SCC-associated molecular features tended to be associated with increased CD4+ T cell infiltrations. CONCLUSIONS: This was the first multi-center study revealing the immunologic and genomic features between SCC and AC in Chinese patients with cervical cancer. Our findings have illustrated the difference in genetic profiles of those two cervical cancer subtypes, which may suggest the possibility of differential treatment regimens, with better immunotherapy efficacy in SCC and targeted therapy options more favorable in AC.


Assuntos
Adenocarcinoma , Carcinoma de Células Escamosas , Neoplasias do Colo do Útero , Feminino , Humanos , Adenocarcinoma/genética , Adenocarcinoma/imunologia , Adenocarcinoma/patologia , Biomarcadores , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/patologia , População do Leste Asiático , Perfil Genético , Mutação , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/imunologia , Neoplasias do Colo do Útero/patologia
20.
J Transl Med ; 21(1): 296, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37131253

RESUMO

BACKGROUND: Leptomeningeal metastases (LM) were rare in gastric cancer (GC), and GC patients with LM (GCLM) generally suffer from poor prognosis. Nevertheless, the clinical utility of cerebrospinal fluid (CSF) circulating tumor DNA (ctDNA) was underinvestigated in GCLM. METHODS: We retrospectively studied 15 GCLM patients, and all patients had paired primary tumor tissue samples and post-LM CSF samples while 5 patients also had post-LM plasma samples. All samples were analyzed using next-generation sequencing (NGS), and the molecular and clinical features were correlated with clinical outcomes. RESULTS: CSF had higher mutation allele frequency (P = 0.015), more somatic mutations (P = 0.032), and more copy-number variations (P < 0.001) than tumor or plasma samples. Multiple genetic alterations and aberrant signal pathways were enriched in post-LM CSF, including CCNE1 amplification and cell cycle-related genes, and CCNE1 amplification was significantly associated with patients' overall survival (P = 0.0062). More potential LM progression-related markers were detected in CSF samples than in tumor samples, including PREX2 mutation (P = 0.014), IGF1R mutation (P = 0.034), AR mutation (P = 0.038), SMARCB1 deletion (P < 0.001), SMAD4 deletion (P = 0.0034), and TGF-beta pathway aberration (P = 0.0038). Additionally, improvement in intracranial pressure (P < 0.001), improvement in CSF cytology (P = 0.0038), and relatively low levels of CSF ctDNA (P = 0.0098) were significantly associated with better PFS. Lastly, we reported a GCLM case whose CSF ctDNA dynamic changes were well correlated with his clinical assessment. CONCLUSIONS: CSF ctDNA could more sensitively detect molecular markers and metastasis-related mechanisms than tumor tissues in GCLM patients, and our study sheds light on utilizing CSF ctDNA in prognostic estimation and clinical assessment in GCLM.


Assuntos
Ácidos Nucleicos Livres , Neoplasias Pulmonares , Neoplasias Meníngeas , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Estudos Retrospectivos , Neoplasias Meníngeas/genética , Mutação/genética , Genômica , Biomarcadores Tumorais/genética , Neoplasias Pulmonares/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...